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The problem of flow with a detached shock wave past a body has been
examined by many authors, but in an approximate formulation in most
cases,

In[1,2], and in other publications the solution is given in the
form of series. However, this method enables one to investigate only
a small portion of the flow in the neighborhood of the axis of symmetry,
and near the stagnation point. Making use of the hodograph plane for
rotational flows, it is possible to examine only cases where the Mach
number of the incident flow is close to one (Busemann [ 3 ] and others).
The Japanese scientists, Tamada [4 ] and Hida [5 ], solve the given
problem by making a priori assumptions about the form of the shock
wave, and agsuming the fluid to be incompressible behind the shock
wave. Uchida and Yasuhara [ 6 ] propose a semi-graphical approximate
method for computing the flow behind a curved shock wave, and Mitchell
[1] calculates the flow around a blunt body by a difference method,
using experimental data for the form and the position of the shock wave.

Below, the problem is solved numerically with the aid of integral
relations proposed by Dorodnitsin [ 8 1. This method reduces the problem
of integrating a system of nonlinear partial differential equations to
that of numerically solving an approximating system of ordinary
differential equations, With the use of electronic computing machines,
the method of integral relations affords the possibility of obtalning
the final results with the required degree of accuracy for the problem
in the exact formulation.

1. Fornulation of the problem. Let us examine the flow with a de-

tached shock wave past a plane body of arbitrary shape (profile), having
an axis of symmetry. Suppose a uniform supersonic stream (M_> 1) of an
ideal gas, with constant velocity uw_, flows past such a body at a zero
angle of attack. A shock wave, the position and shape of which are not
known in advance, is formed in front of the body. It is required to
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compute a mixed rotational flow of a compressible gas in the minimal
domain of influence, i.e. in the domain bounded by the shock wave, the
axls of symmetry, the body contour, and the first limiting characteristic
(or characteristics) passing between the shock wave and the body.

Let us introduce dimensionless quantities, referring the speed to the
maximum speed, the pressure and the density to the pressure and the
density in front of the shock wave, and the linear dimensions to a
typical body dimension; then we have the equations of motion, the equa-
tion of continuity, and the adiabatic equation in the form

2 k ’ _1
V (pw) = 0, wy £=0 (1.1)
e

where w, p, and p are the velocity, pressure, and density behind the
shock front, and x is the adiabatic exponent (for air « = 1.40).

Let us write the system of equations (1.1) in polar coordinates r, 6
(Fig.1), introducing the Bernoulli equation in place of one of the equa-
tions of motion;. together with the equation for the stream function, i,
the new system will have the form:

orH | 3S arkh | ot

—— T x5 = &, —+-7=0

or ' 0% ar 39 (1.2)
d d
w=elgy—re).  e=%=oe

Here
H = kp + pu?, S = puv, g = kp+ pv?, h=ru, l=w
- 1
p=(1—w?p, p=r1p *71, =1 —wp?
and u, v, are the components of the velocity, w, in the r and 6 directions.
In this system the unknown functions are u, v, ¢, ¢.
The boundary conditions on the body contour r = r(6) have the form
__ v d"o _
= Ed“s’, !.P-—-O
(1.3)

de e—1\x 1 Ve (x—i)'z]_
q’=x'—1<§c+1> ',7.2:[1—wm2_ | = const

Let the equation of the shock front be represented in the form
r=r,(6) + €(0), where ¢ () is the distance from the body contour to the
shock wave along the ray § = const. We can express the well known shock
conditions in the required form:
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wx=wm[1-——25in%(1—— 1)] (1.4)

x-+1 M _*sinc

sin 23(1———1.——) (1.9)

Wy = M2 sin’e

+1

o+ ) o

1
D= = Wer (1 — We2)*~1(ry +¢)sin$ (1.7)

Here 0 is the angle between the tangent to the shock front and the
direction of the incident stream, w_ and w _ are the components of the
velocity, w, along the axes x = ~rcos § and y = r sin 6 (Fig.1); the
subscrlpt o indicates quantities in front of the shock wave; w = v

sine /l - w 2)

The velocity components are related in the following way:

{?::

= wysin Y — w,cos H, v = w,sind 4+ w,cos ¥ (1.8)

From the relation dy/dx = tan o we get
d d
G =—(tecgo+8) —%e

2. Method of solution. Between the body and the shock wave let us draw
the N~ 1 curves

= 7 (8) = £ (9) + ke (9) (a=T=5tE i=2sn)

(1.9)

which break up the region of integration into N strips. We will denote
all the quantities on the i’th intermediate curve by the index i, those
on the shock front (i = 1) by the index 1, and on the body by the index 0.

Let us integrate the first two equations of the system (1.2) along an
arbitrary ray € = const, from the body contour to the boundary of every
strip; we then get 2N independent integral relations:

i T

5\ SC 9 — (S =5 0) bt —rHy = | gr 9ar (2)

i
d dr, d
'ES—S t(", S)d"'—(tigg“"to—d%->+rihi—'—"oh0==‘—0 (2-2)

Te

We will approximate the functions occurring in the integrands of (2.1)
and (2.2) by interpolating polynomials of degree N in the variable r,
taking for the points of interpolation the boundaries of the strips

N
7 9) = Dan@®) [l (2:3)

me={
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where the coefficients a_(6) will depend linearly on the values of the
corresponding functions on the boundaries of the strips. Writing further
the last two equations of the system (1.2) along each intermediate curve
r = r;(6) (on the body and on the shock wave, ¢ and ¢ are determined from
the boundary conditions) and taking into account the equation (1.9), we
will get an approximating system, consisting of 4N — 1 equations from the
unknown quantities e, o, vy, u;, vy, ¥, ¢, (i=2,3, ..., N

Let us solve this system for the derivatives of all the unknown func-
tions:

di d d
5= — o Fe)etg(c+ %) —T, =F

dvo - D dd)l _ & '

ds (x —1)/(xn —?— 1) = wy? s rFrs ?; [vi a9 ritl; (2.4)
du; 1 -1

S S, dlntp.dq,.]
= = it el 4.
PO l[fl—"’?i “tht iy dy; db

dv, E; .
a3 T (w—1 F 2w/l D—w? 2 () = ? ($) (=23..N

Here F, EO, Ei’ fl, and fz are known functions of & and of the
quantities to be determined, analytic in the domain of integration, (the
form of these functions depends on N), and

.dln‘Pi_dlnqal “dlncplfgﬁ (25)
a9, By gy, 5 99 Ayl

where dlnqSl/da and d¢y /d6 are computed from (1.6) and (1.7).

All the boundary conditions on the body and on the shock front are
satisfied automatically, as can be seen from the manner in which the
system was constructed. The integration of the system obtained is done
numerically, starting from the axis of symmetry 6 = 0, where v, = v, =
g, =0, 0 =Yn, $= #,(0), and the N initial values of ¢ and u; are un-
known parameters.

In the mixed flow under examination, disturbances in the supersonic
region beyond the limiting characteristic do not influence the subsonic
region, and consequently we cannot obtain on the upper boundary of the
domain of integration the additional conditions needed to determine the
missing initial values of the unknown functions. However, from the
structure of the approximating system it is evident that in the neighbor-
hood of the sonic line N equations of the system have N moving singular
points. In order that a continuous transition across these points be
possible, it is necessary that certain conditions be satisfied at these
points; namely, at the points where

% —1 . ox—4 427

2. i=2,3...,¥
*T1 W T T ¢ )

2 e
Wy ==
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E, = 0 and E; = 0 respectively (we will call the totality of these points
a singular line). If the conditions are not satisfied, the derivatives
dv,/d8, dv./df, become infinite on the singular line, i.e. the accelera-
tions become infinite, and then the motion cannot be continued across this
line; the singular line is then a limit line and the whole solution has
no physical meaning. These conditions are similar to the ones obtained

by Khristianovich [9 ] from an exact system of partial differential equa-
tions for certain cases of plane irrotational flows. To satisfy the N
conditions on the singular line we have at our disposal N parameters when
6 = 0. In this way, the requirement that the motion be continuous across
the singular line yields the missing conditions for the determination of
the problem.

In the approximating system (2.4) the right hand sides are functions,
analytic in all their arguments everywhere in the domain under examina-
tion, except at the points of the singular line, where N equations have
right hand sides of the form 0/0. According to Cauchy’s theorem, through
every nonsingular point of the domain there passes one, and only one,
solution of the system (2.4), which is analytic in #; consequently, in
the neighborhood of such a point this solution can be represented in the
form of power series.

3. Construction of the solution in the neighborhood of the singular
points. Let us first examine the equation
dw P (Z,W)

9z T Q@ W) (3.1)

where P(Z,W) and Q(Z,W) are analytic functions of the variables Z, W in
the neighborhood of the point Z= ¥ = 0, with

P(0,0)=0Q(0,0)=0
P(Z, W) =aZ + bW + 0 (2> + W?)
Q(Z, W) = cZ + dW + 0 (22 + W?) (ad —be 0) (3-2)
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Let A, A, be the roots of the equation A2 (b+ ¢~ (ad - be) = O,
We will show that if A = A /A is a real negative number (which takes
place when (b — ¢)? + 4ad > 0 and ad ~ bc > 0), then equation (3.1) in
the real domain has no other integrals tending to zero together with Z
except for the two analytic ones.

Let us investigate the possibility of the existence of a solution which
is O(Z™) at the origin; for this we reduce (3.1) to the canonical form

by means of a nonsingular linear transformation. Here ®, and ®, are func-
tions of order ¢% + 72, analytic in & and 5 in the neighborhood of the
point £ = n = 0.

(3.3)

From this, by the way, it follows immediately that in the real domain
the solution which is being sought has only two distinct critical direc-
tions, along which four integral curves enter the singular point, i.e.
the singular point is a saddle point.

If we construct the Puisot diagram for equation (3.3), we will find
that at the point £ = 7 = 0 the solutions are understood to be(p?)=0(£2)
and ¢ = 0(7?). Each condition defines a change of variables which trans-
forms (3.3) to a Briot and Bouquet equation of the first reduced type, wit
with a real negative coefficient b corresponding to the unknown function
(b=X~2when 7 =0(?) and b= (1 - 24 )}/A when ¢ = O( 2)]. Briot
and Bouquet [ 10 1 showed that with the exception of the spe01al case when
b is a positive integer, the equation obtained has one, and only one,
analytic integral passing through the singular point; furthermore, in the
real domain there is no other integral, except for the analytic one,
passing through the point, when Re b < 0. The convergence of the series
representing the solution is proved by introducing a majorant for the
right hand side of the Briot and Bouquet equation. In the Z, W variables,
the solutions of (3.1) passing through the point Z= ¥ = 0 can be written

as converging series of the form
w

W= 2 4,,2" i =1,2) (3.4)
f- 1
The assertion made above has thus been proved.

Let us now return to the approximating system (2.4). Suppose on the
contour of the body the singular point is at 6 = 6, and on the t’'th
intermediate curve, at @ = Gi. We will assume

B9 By o= Fa - ook Dy (3.5)
which can always be obtained by appropriately choosing the intermediate
curves. Then, at the k’th singular point

(8, e, 5,00, 2, %) (h==0,2,3, .., N; i=2.3...,N)
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only one of the 3N differential equations
de, I,
s T A, (3.6)

has a right hand side which is indeterminate; however, E,, Ay, and also
the right hand sides of the remaining equations will be analytic in all
the arguments in the neighborhood of this point.

Let us linearize the remaining system; then equation (3.6) can be
written in the form (3.1) (Z=6-6,, W= v, - vk(k ), and the conditions
for the existence of a real negative A are satisfied. Consequently the
singular point 1is a saddle pdéint, and the equation (3.6) has no real
integrals satisfying the condition v, = v, k) for 6 = ), except for the
two analytic ones (3.4).

Then in the neighborhood of the k'th singular point there exist two,
and only two, solutions of the system (2.4) with the initial values

' X
=9y, t=:® g =% e =W

b ? 17 Vi

and both solutions are analytic in some domain containing the point

6 = 0,. Let us connect one of these solutions to the solution before the
singular point, obtained in the usual manner {the number of conditions
for comnecting is equal to the number of arbitrary conditions at the
singular point), but since the second solution intersects the first only
at the singular point itself, the matching conditions uniquely determine
the integral curve through the given singular point. Thus, the approxi-
mating system (2.4) has, in the complete domain of integration under
examination, a unique solution, which is analytic everywhere and which
satisfies the conditions both at # = 0 and on the singular line.

The solution of the approximating system is carried out numerically
with different numbers of intermediate curves: in the first approximation
(N = 1) there are no intermediate curves, and S, g, t are approximated
linearly from their values on the body and on the shock wave. The three
unknown functions ¢, o, v, are found from three differential equations.
In the second approximation (N = 2) one. intermediate curve is introduced,
in the third - (N = 3) - two curves, etc. Coincidence of the results
within the required degree of accuracy in the last two iterations can be
used as an indication of convergence in an actual case. The basic diffi-
culties of the computation result because, in the first place, the bound-
ary conditions are given on the singular line, and in the second place,
after satisfying at each singular point the matching condition, one must
integrate through this point numerically (in solving one must go through
all N singular points of the approximating system). Utilizing the series
representation of the solution in the neighborhood of both the regular
and the singular points, and taking into account the converging character
of the integral curves, we succeeded in constructing simple methods of
passing through the singular points of the approximating system.
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4. Some formulae for the flow behind the shock wave. We will investi-
gate the local properties of the configuration of the streamlines, ¢ =
const. and the lines of constant speed, w = const.

Let us derive the formula for the angle & between these lines, and
also for the angle of inclination of the line w = const.to the direction
of the incident stream (denote this angle by ® ).

The value of these angles enables one to estimate in the following the
accuracy of the computation in the most sensitive regions, and yields,
without any numerical computation, qualitative information about the
character of the domain of influence for different Mach numbers of the
incident flow.

First, let us find expressions for these angles on the shock wave.
Along a curve w = const. which has the equation y = yw(x) we have

ay, w, 0w, [0z - u'y(')wu,'ax

o — 4.1
* w, 0w [0y + u’Tlawyja_z/ (4.1)

To determine the four derivatives dw /8x Jw /Sy, Swyfax and dw /By,
we have a system of four equations (the vorticity equation, the trans-
formed equation of continuity, and the two expressions for the total
derivative of w, and w, along the shock wave):

811'1} dw,,
I ) =
u\‘a) e wawy, ,’6& ) (')’wy> . ( u'y'z) 8{69 B
(1__'7?~ “ox —°_ﬂﬂ Gy T e/ T b oy =0 (4.2)
ow, dw,, dw, Bu‘u . ow du'y
= T HE T w87
Here () is the vorticity, ¢ is the speed of sound:
il 1
1 a1, w=idlng g #—
Q=—2;(1—-w) o T = (1 — w?)

Let us determine the right hand sides of (4.2). Along the shock wave
we have

ding dlnedodx dy _
a6 T Tdo dzdi’ 3z = Pollw 89
Therefore, taking into account (1.6), we will find
. do
Qzl’l’%
x 1
- ___1“ L w1 2w —1/s (ke — )2 ctg
Fr=—-(1—w)lo Pt (0 T 1) [0 — /g (x — 1)5/x] (4.3)

where @ and w? are obtained from the boundary conditions on the shock
wave.

Similarly, from the relations (1:4) and (1.5) we get
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dw, do Fo=—-2 ;‘E’i sin 23 (4.4)

:;;_’1 <(‘()S 23 - ———1——> (4.9)

Mo 2sinte

dx 2 dz’

dw do
Wy g Ao 9
dr #y da ! £y

Evaluating now the unknown derivatives from (4.2), and substituting
them into (4.1), we get
m(w, — 1wy, ctgo) 4- (wo, — w ) (F1 + Factgo)

; 4.6
(F:!—”l Ctg G) (u.x'—-u.y ctgc) ’+‘ wy (1'3—F1) ( )

g @, =—

Here
(2 —w, ) (F1 + Fyctgo— Fa) - w (g, —w, ) (F1 4 2F, cig o)
(1 +otgio) — (w, —w cigop
On the shock wave the angle ® = ®, is determined in the following way:

m =

o for @
cnx={ or @, <o (4.7)
—(r—® ) for (D‘ >0

When ¢ = 2w and ¢ = a = arc sin Mw_l, the curves w = const.are tangent
to the shock wave.

Now it is easy to determine the angle 5, between the streamline and
the curve w = const.

w
81 = (DI - gl’ ;31 = arc tg’u—)y (4.8)
x

The angles ®, 8§, and B are positive when measured in the counterclock-
wise direction,

As we know, o and 3, are functions of M_ and » on the shock wave; then
from the expressions (4.6) - (4.8) it follows that & = & (M, w) and
8, = 81(Mw, w), i.e. for the plane case on the shock wave, the angle which
the curve w = const,makes with the streamline and with the direction of
the incident stream (and consequently, the angle at which the curve w =
const. approaches the shock wave) depends only on the Mach number of the
incident stream (M_) if the speed v is given. The shape of the body thus
has no influence on the value of this angle. For axisymmetric flows these
angles depend also on the curvature of the shock wave, and therefore on
the shape of the body.

Making use of the boundary conditions on the body, we can, in a similar
way, obtain the expressions for these angles on the profile r = r (6):

[roro’ tg F - ro? — rorg” + ro'3 vo + (ro tg 8 — ry’) rovy’ (4 9}
[rore” — (re? — rore® - ro’2)4g 8] v + (rp + ro” 42 9) rove’ :

butSOr-be—BO , SO

tg(paz—

tg B = — 2o’ (4.10)

Wy Vr02+ 70'2
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Table 1.

Mo
M

1.00 1.25 1.50 1.75 2.00 3.00 £.00 5.00 6.00 7.00 8.00

0.4 ®° 820122 77289
. 3 762689 681386
0.6 ° 672432 422408 41°081 412416 412836 422166 420441
) 3° 572808 182657 92591 7:196 62092 52484 5017
0.8 o° 102469 30148 3°033 192941 272831 312626 33:713 342969 359793
: 3 82054 — 13°844 | — 48°035 | — 13°142 | — 99925 | — 82460 | — 77687 | — 7244 | — 62953
1.0 @° | —90°000| - 92908 | — 84°221 | — 60°508 | — 507001 30312 192840 262306 292548 312445 32:601
. 30| —90°000| — 97°894 | — 052945 | — 87:356 | — 73°606 | — 30°697 | — 18°014 | — 14°804 | — 127888 | — 11°838 | — 117189
02 ©° 4229285 | 114°621 | —104%251 | — 90°000 | — 141790 | -+ 13°020 220231 282499 282871 302344
. 3° 1232556 | 1220807 | —118°084 | —110°180 | — 470384 | — 24°702 | — 482010 | — 15%151 | — 13%644 | — 121744
1.4 D° 4310477 | —123°401 | —113%402 | — 382411 52845 182444 232787 26:638 282356
. 3° 4349393 | —133°388 | 1292481 | — 682496 | — 200905 | - 200056 | — 160241 | — 141328 — 13122
16 ®° —136°859 | 128946 | — 67°962 | — 2813 142530 219122 242472 269442
: 3° —1510246 | —139°999 | — 94°048 | — 362431 | — 21°815 | — 169897 | — 142565 | — 13°262
2.0 @° --1502000 | —1162610 | — 32142 5H07 152491 No&oW 222855
: 3° --450%000 { —~136°500 | — 609053 | — 269543 | — 18%142 ] — 142745 | - 122980
3.0 ®° —160%529 | —140°048 | — 76°378 [ — 7013 72489 129994
’ 3 —160°520 | —154°080 | — 06%644 | — 30%404 | — 179735 | ~—~ 13%304
4.0 o° —185°522 | —152°207 | —1212762 | — 25%616 | — 07120
¥ —165°522 | 1620289 | --136°698 | — 43250 | — 19%405
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Here w, is the speed on the body, and R, the radius of curvature of
the body profile. The primes indicate dlfferentiation with respect to 6.

For a circular cylinder (ro = 1) one obtains very simple formulae:
) to Sva’ ’
tgq)ox?.‘l.‘.t_ﬁ_ﬂ;_ tg80=’1v°_ (4.11)

From (4.10) it is evident that 3, = Yn for Ry = =, and 0< 8, < Yon
for 0 < Ry <=, w," > 0, i.e. the curves w = const approach the body
contour at right angles only on the straight line sections of the contour,
and at an acute angle at those points of the contour where the stream
accelerates and the radius of curvature of the contour is finite.

$000
&0 T ' T T I
5L “ L M—const
! ”.ﬁ ”OO 6 >0 w
4w ' ; —
\ b a4
358 \\
p Moo=164
w\i\ af 7 78 Moo
= /fz?—-’?
!
i
"40 L3 // / 4

-160 T/Vu/

Fig, 2.

The values of the angles ®, and 8, on the shock wave, with x = 1.40,
and for different values of M = w/ec and M_ are given in Table 1 and Fig.
2. On the sonic line (f = 1) we found that |8,/ =%m for M_ = 1.00 and
1.69 (k = 1.40), [80 > %a for 1< M, < 1.69 and |8,] < Y% n forM >
1.69. The shape of the sonic lines for a circular cyimder are shown in
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Fig.3. From this one can immediately establish the character of the
domains of influence for different values of M_. For M < 1.69 the minimal
domain of influence will be bounded by the characteristic of the first
family, which goes from the body to the sonic point of the shock wave;

for M_ > 1.69 there are no characteristics issuing from the 'sonic point
of the shock wave, and the minimal domain of influence will be bounded by
the characteristics of the first and second family which emerge from
points on the body and on the shock wave for ¥ > 1, and are tangent to
the sonic line (Fig.4). These results also give some idea of the shape of
the domains of influence for other profiles.

Moy =0, 0(N=3)

4$8(N=2)
A0(N=2)

14

1703 [ 1481 17
1546

Fig, 3.

5. Computation of the flow around a circular cylinder. As an example
of the method described above, computations of the flow past a circular
cylinder (rj = 1) for different values of M and different degrees of
accuracy (N = 1,2,3) were made on a high speed electronic computer of the
Soviet Academy of Sciences.

Fig.3 shows the shock waves and the sonic lines for the cases M_= 3.0
(N=3), 4.0 and 5.0 (N = 2); experimental data of Kim [11] for M_= 4.0
are also plotted. Incidentally, in his work Kim points out the convex
character of the sonic line for M_ = 4.0; thus our results agree qualita-
tively with those of Kim. Furthermore, the values of the angle of inclina-
tion of the sonic lines at the points on the shock wave and on the body

are in good agreement with the exact values, obtained from (4.6) - (4.8)
and (4.11),

Fig.4 shows the shock wave, the sonic line, and the boundary character-
istics which bound the minimal domain of influence, for the case ¥_= 3.0
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in the third approximation (N = 3). The picture of the flow obtained from
the second approximation is very close to this one,

The manner in which the pressure distribution on the cylinder changes
as M grows from 2.13 to 5.0 is shown in Fig. 5, where the ordinates re-
present the ratio of the pressure pO(O) to the pressure at the critical
point, p,(0).

Fig.6 and Table 2 illustrate the convergence of the method as the
accuracy of the approximation improves (N=1,2,3) for M_= 3.0. A com-
parison with results of experiments made by G.M. Rlablnkov is also shown
there.

The largest proportion of the work done here and abroad has been de-
voted to the determination of the distance, €¢,, from the body to the
shock wave along the axis of symmetry. Fig.7 shows experimental data
taken from Kim's article (1), and for comparison the results of our
computation (5), and the theoretical results of Tamada (2), Hida (3), and
Smurov (4). It is evident from Fig.7 that our results agree quite well
with Kim's experimental data (for example, for M_= 4.0 Kim gives the
value €, = 0.54, while we get ¢, = 0.546).

Tables 3 and 4 present the results of the numerical computation for
the flow past a circular cylinder with #_= 3.0 (W = 3, « = 1.40).

Table 3 gives the value of the velocity components, u, v, the pressure,
p, and the stream function, ¢, at five points of the ray 6 = const,; the
distance from the cylinder to the shock wave is divided into four equal
parts:

=(r - e (8) = O(cylinder), 0.25, 0.50, 0.75 and 1.00 (shock wave)
For £ = 1.00, in addition to these quantities, the values of

1 -
®x—1 dln q)l’u 1

g
€, =7-—6, vy =@ , Vg = dq;

are shown.

The dimensionless pressure, temperature (referred to the temperature
in front of the shock wave), and entropy, can be found at the same points
from the following formulas:

P
w?

p=1 T =1 — wh, s=c¢,(x—1)Inw

where »? = u? + v?, and v, = v1(¢), the quantity v, = v, (/) is used in

the determination of the vortlclty.

Table 4 gives the coordinates of the sonic line and of the boundary
characteristics for the same case.

Analysis of the computations and comparison with experimental data
show that in the neighborhood of the axis of symmetry the first approxi-
mation already gives fair results; the pressure distribution on the body
and on the shock wave, and the shape and the position of the shock wave,
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Table 2.
Nowni N=2 N~-3
»
t B L4 Pe L e
0.0000 0.696 1.000 0.708 1.000 0.703 4.000
0625 698 997 710 997 704 996
1250 701 991 745 989 708 087
1875 708 880 724 974 716 970
2500 77 964 737 952 727 947
0.3125 0,730 0.942 0.752 0.923 0.741 0.918
3750 746 914 770 887 759 883
4375 787 880 792 847 780 844
5000 783 841 818 803 805 801
5625 825 797 847 757 834 754
0.6250 0.862 0.749 0.884 0.708 0.868 0.706
6875 906 897 919 858 a0 655
7500 959 842 963 607 952 805
8125 1.020 581 1.012 557 1.002 554
8750 — — 068 508 057 503
0.8375 —_ - 1.430 0.460 .42 0,455
1.0000 — — 201 414 193 408
0625 — — 280 3n 273 364
1250 —_— _— J 369 331 385 321
Table 3.
Eme 0.00 (u=0; =0) E=0.25
840 v 10* p 10* u 104 o 10 P10 Y100
3 0 328 —708 [¢] 322 0

625 30 327 —703 29 324 17

1250 61 324 —897 57 319 34

1875 92 318 —885 85 314 51

2500 123 314 —867 112 308 87

3125 155 301 —643 140 302 84

3750 186 290 —612 167 294 100

4375 247 271 —574 193 285 148

5000 247 263 —529 219 274 132

5625 277 247 —477 245 264 148

6250 307 234 —417 270 252 164

8875 336 215 —348 264 240 479

7207 352 206 —308 306 234 187

7520 366 198 —-268 317 228 194

7832 380 189 —226 329 222 204

8145 304 181 —181 339 218 209

8379 405 175 —146 348 211 214

8750 42 165 — 88 360 204 223

9062 435 157 — 35 370 198 230

9375 448 449 19 380 493 237

9688 462 144 77 390 187 244

1 0000 475 134 137 399 181 251

10312 488 126 199 408 176 257

10625 501 119 265 417 170 264

1 0938 513 112 334 426 165 21

11250 526 105 405 434 159 278

11562 538 99 479 442 154 285
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TABLE 3.
i = 0,50 a =0.75
2100 u 104 v i0* p10° ¢ 104 u 0 v 104 p10° b 100
0§ —1228 0 311 0 —1662 0 287 0
625 | —1224 28 341 33 —14650 29 207 48
1250 | —1211 56 309 65 —1829 59 295 97
1875 § —1188 84 306 98 —1596 88 293 145
2500 f| —1155 111 301 130 —1549 118 290 194
3425 | —1143 138 296 183 —1490 146 286 242
3750 | —1059 164 290 195 —1417 175 281 2H
4375 | — 996 191 283 227 —1330 202 276 340
5000 | — Y21 216 275 260 —1230 229 270 389
5625 §| — 835 241 267 292 —1417 255 263 439
6250 | — 738 264 258 324 — 890 280 256 489
6875 | — 629 288 249 355 — 850 304 248 538
7207 | — 566 299 244 372 — 771 317 244 566
7520 { — 503 310 239 388 — 692 328 240 592
7832 || — 438 321 235 404 — 611 339 236 618
8145 || — 369 331 230 420 — 526 350 232 644
8379 i — 316 339 226 432 — 461 358 229 664
8750 | — 227 350 221 451 — 354 370 225 695
9062 1 — 149 360 246 467 — 260 380 220 722
9375 | — 068 369 212 484 — 184 389 216 750
9688 16 378 207 500 — B84 398 212 777
1 0000 103 387 202 516 38 407 208 806
10312 194 395 198 533 142 415 204 834
10625 288 403 193 550 250 424 200 863
10938 385 411 189 567 360 431 196 893
11250 485 448 184 584 472 439 192 924
11562 588 425 480 604 585 446 188 955
E=1.00
810 u 10* v10* pi0* ¢ 104 s 10* R v, 10* vy 10°
0 I —2079 0 281 0 703 0 3046 0
825 | —2070 34 280 65 704 35 3041 — 486
1250 | —2043 67 279 130 709 69 3027 — 926
1875 §F —1099 99 278 495 746 102 3004 —1323
2500 | —1935 131 276 264 727 135 2975 —4714
3125 | —1855 162 273 327 741 167 2937 —2102
3750 || —1759 192 - 269 393 759 200 2893 — 2461
4375 || —1643 22 266 461 780 232 2843 —2774
5000 §| —1512 251 261 529 805 263 2787 —3038
5825 | —1365 278 257 598 834 294 2727 —3256
6250 | —1202 305 252 868 868 324 2684 —3432
6875 | —1023 329 246 739 907 354 2598 —3565
7207 | — 922 342 243 778 830 369 2562 — 3619
7520 1 — 823 353 241 815 952 384 2528 —3658
7832 || — 720 364 238 852 977 398 2593 —3685
8145 || — 615 375 235 890 1003 412 2459 —3699
8379 | — 533 383 233 919 1023 422 2433 | —3699
8750 | — 400 394 229 965 1057 439 2394 3724
9062 | — 285 404 2268 1004 1088 452 2356 —3719
9375 | — 167 413 223 1045 1124 466 2324 —3708
9688 — 47 424 220 1086 1156 479 2288 —-3682
1 0000 76 429 247 1127 1193 493 2251 —3650
10312 203 437 214 1170 1232 506 2217 —3587
1 0625 33 444 210 1214 1274 518 2183 —3501
10938 463 451 207 1258 1318 531 2149 —3408
14250 506 457 204 1304 1365 543 2147 —3322
1 1562 732 462 204 1354 1415 555 2084 —3230
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are determined with sufficient accuracy in the whole domain of integra-
tion by the second approximation, while for the determination of the
velocity field, and, consequently, for the construction of the sonic lines
with M_g 3.0 - 3.5, one needs at least the third approximation, whereas
the second approximation suffices for M_> 3.5.

Characteristica
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Fig. 6. Fig. 7.

The results of the computation enable one to construct, in the domain
of influence, a picture of the pressure distribution on and outside of
the body, the characteristics, the shock wave, etc.

The problem of the flow around an axisymmetric body, with a detached
shock wave, can be solved in a similar way.
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TABLE 4.
Limiting Characteristics
Sonic Line First Family Second Family
—-— v il v —x v
0.664 0.748 0.575 0.818 0.777¢ 1.433
666 798 576 834 813 494
668 852 584 904 853 544
669 911 593 972 896 592
670 974 605 1.038 941 638
0.671 1.045 0.620 1.104 0.988 1.683
677 135 638 163 1.037 726
692 246 660 222 089 768
720 340 684 280 141 809
T71* 443 714 336 186 843
0.841 1.510 0.742 1.391
940 569 777% 443
1.029 602
117 626
276 668

Note. Points at which the characteristics are tangent to the
sonic line are denoted by an asterisk.
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