
FLOW WITH A DETACHED SHOCK WAVE ABOUT 
A SYMMETRICAL PROFILE 

(OBTEKANIE SIRIHBTRICHNOQO PBOFILIA S OTOSHEDSHEI 
UDARNOI VOLNOI) 

PllM Vo1.22, Nc.2, 1958, pp.206-219 

0. M. BELOTS~KOVSKII 
(Moscow) 

(Received 2 July 1958) 

The problem of flow with a detached shock Tave past a body has been 
examined by many authors, but in an approximate formulation in most 
cases. 

In [ 1.2 1, and in other publications the solution is given in the 
form of series. However, this method enables one to investigate only 
a small portion of the flow in the neighborhood of the axis of symmetry, 
and near the stagnation point. Making use of the hodograph plane for 
rotational flows, it is possible to examine only cases where the Mach 
number of the incident flow is close to one (Busemann [3 1 and others). 
The Japanese scientists, Tamada [ 4 1 and Hida [ 5 1, solve the given 
problem by making o priori assumptions about the form of the shock 
wave, and assuming the fluid to be incompressible behind the shock 
wave. Uchida and Yasuhara [ 6 ] propose a semi-graphical approximate 
method for computing the flow behind a curved shock wave, and Mitchell 
El 1 calculates the flow around a blunt body by a difference method, 
using experimental data for the form and the position of the shock wave. 

Below, the problem is solved numerically with the aid of integral 
relations proposed by Dorodnitsin [8 1. This method reduces the problem 
of integrating a system of nonlinear partial differential equations to 
that of numerically solving an approximating system of ordinary 
differential equations. With the use of electronic computing machines, 
the method of integral relations affords the possibility of obtaining 
the final results with the required degree of accuracy for the problem 
in the exact formulation. 

1. Fornulation of the problem. Let us examine the flow with a de- 
tached shock wave past a plane body of arbitrary shape (profile), having 

an axis of symnetry. Stippose a uniform supersonic stream (Moo > 1) of an 

ideal gas, with constant velocity w,, flows past such a body at a zero 

angle of attack. A shock wave, the position and shape of which are not 
known in advance, is formed in front of the body. It is required to 
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compute a mixed rotational flow of a compressible gas in the minimal 

domain of influence, i.e. in the domain bounded by the shock wave, the 

axis of symnetry, the body cpntour, and the first limiting characteristic 

(or characteristics) passing between the shock wave and the body. 

Let us introduce dimensionless quantities, referring the speed to the 

maximum speed, the pressure and the density to the pressure and the 

density in front of the shock wave, and the linear dimensions to a 

typical body dimension; then we have the equations of motion, the equa- 

tion of continuity, and the adiabatic equation in the form 

x-l - 
2x 

v (PW) = 09 (1.1) 

where w, p, and p are the velocity, pressure, and density behind the 

shock front, and K is the adiabatic exponent (for air K = 1.40). 

Let us write the system of equations (1.1) in polar coordinates r, 0 
(Fig.l), introducing the Bernoulli equation in place of one of the equa- 

tions of motion;.together with the equation for the stream function, I$, 

the new system will have the form: 

(1.2) 

Here 

H = kp + @, s = pull, g = kp + pv2, h = TU, t = w 

P = (1 - w”) p, p = +I, ‘c = (1 - ,a)& 
and u, v, are the components of the velocity, w, in the r and 8 directions. 

In this system the unknown functions are u, v, $, q5. 

'Ihe boundary conditions on the body contour r = r(O) have the form 

(1.3) 

Let the equation of the shock front be represented in the form 

r = r,(O) + c(O), where E (0) is the distance from the body contour to the 

shock wave along the ray 8 = const. We can express the well known shock 

conditions in the required form: 
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1 
- M-2 sia’% (1.4) 

W0.J 
tuy = - 

x+1 
(1.5) 

4% 
%a - 1 (qq(i + ;)x (1.6) 

+s(&= wm(l - wm2.jh (F, + E) sin9 (1.7) 

Here D is the angle between the tangent to the shock front and the 

direction of the incident stream, wz and wY are the components of the 

velocity, w, along the axes x =-rcos8 andy= r sin6 (Fig.1); the r) 
subscript m indicates quantities in front of the shock wave; 

sin’o/b - w,‘). 

w = 70, 

(1.8) 

(1.9) 

‘Ihe velocity components are related in the following way: 

1L = w,sina - w,cosQ, u = w,sin9 + wLl,cos8 

From the relation dy/cix = tan o we get 

dE 
d9 = - fro + E) ctg (G _1- 3) - f$ 

2. Method of solution. Between the body and the shock wave let us draw 

the N - 1 curves 

r = Fi (3) = Fo (3) + EiE (8) c,=N--i-i-1 
I N ’ i = 2,3, . , . ) N 

> 

which break up the region of integration into N strips. We will denote 

all the quantities on the i’th intermediate curve by the index i, those 

on the shock front (i = 1) by the index 1, and on the body by the index 0. 

Let us integrate the first two equations of the system (1.2) along an 

arbitrary ray % = const, from the body contour to the boundary of every 
strip; we then get 2N independent integral relations: 

‘i 

-& 1 S(r,9)dr-(Si~-SS,~~)+r,Hi--r,H,= 

ri 

s 
g (r, $)dr (2.1) 

r. rm 
’ f 

d 
dS t(r, 8)dp- ti dB dr, - to ‘iz) + Fihi - F&Q = 0 (2L2) 

We will approximate the functions occurring in the 

and (2.2) by interpolating polynomials of degree N in 

taking for the points of interpolation the boundaries 
N 

I (F, 9) = 2 urn (3) [’ ~;~~“‘]” 
m-o 

integrands of (2.1) 

the variable r, 

of the strips 

(2.3) 
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where the coefficients a,(8) will depend linearly on the values of the 
corresponding functions on the boundaries of the strips. Writing further 
the last two equations of the system (1.2) along each intermediate curve 
F = F i (6) (on the body and on the shock wave, I/J and 6 are determined from 
the boundary conditions) and taking into account the equation (1.9), we 
will get an approximating system, consisting of 4N- 1 equations from the 
unknown quantities 6, 0, vo, ui, vi, oi, Qi, (i = 2,3, .*., N). 

Let us solve this system for the derivatives of all the unknown func- 
tions: 

d= F --= 
d9 

do 
‘;I-9 =++e)ctg(a+q--~, 

dvo G d+i dri 
--_ = 
d8 (x - I)l(K + 1) - UQ f zi- = pi Vi Z-riUi 

1 (2.4) 

dUi 1 z+i .&j- = ti Y31 [ 
-- 

jl-Uicpi Y~lj2+&!.!&~ 
1 

dvi Ei 
25 = (x - 1 + 2Ui2)/(X$. I)-wit ’ 

pi($t)=‘9,($i) (i=2,3....,N) 

Here f’, Eop Ei, fl, and jF are known functions of B and of the 
quantities to be determined, analytic in the domain of integration, fthe 
form of these functions depends on N), and 

d In qi d In ‘PI d In qsq do da .-=- 
49 i dJl1 61_+i 

=--- I da da d+, +,+ 
(2.5) 

where dlncf,l/do and d$,/dO are computed from (1.6) and (1.7). 

All the boundary conditions on the body and on the shock front are 
satisfied automatically, as can be seen from the manner in which the 
system was constructed, The integration of the system obtained is done 
numerically, starting from the axis of syJnnetry 6 = 0, where vO = ui = 
Q$ = 0, 0 =%s, 56 = $$i,(O), and the N initial values of f and ui are un- 
~0~ parameters. 

In the mixed flow under examination, disturbances in the supersonic 
region beyond the limiting characteristic do not influence the subsonic 
region, and consequently we cannot obtain on the upper boundary of the 
domain of integration the additional conditions needed to determine the 
missing initial values of the unknown functions. Jlowever, from the 
structure of the approximating system it is evident that in the neighbor- 
hood of the sonic line N equations of the system have N moving singular 
points. In order that a continuous transition across these points be 
possible, it is necessary that certain conditions be satisfied at these 
points; namely, at the points where 

UQ --_ 
x-l 

w,’ = 
x-l j-z?+3 

L-qx’ x+1 
(i=2,3,...,N) 
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Fig. 1. 

E, = 0 and E, = 0 respectively (we will call the totality of these points 
a singular line). If the conditions are not satisfied, the derivatives 
dv,/d$, d~i/de, become infinite on the singular line, i.e. the accelera- 
tions become infinite, and then the motion cannot be continued across this 
line; the singular line is then a limit line and the whole solution has 
no physical meaning. ‘Ihese conditions are similar to the ones obtained 
by Khristianovich [: 9 1 from an exact system of partial differential equa- 
tions for certain cases of plane irrotational flows. To satisfy the N 
conditions on the singular line we have at our disposal N parameters when 
6’ = 0. In this way, the requirement that the motion be continuous across 
the singular line yields the missing conditions for the determination of 
the problem. 

In the approximating system (2.4) the right hand sides are functions, 
analytic in all their arguments everywhere in the domain under examina- 
tion, except at the points of the singular line, where N equations have 
right hand sides of the form O/O. According to Cauchy’s theorem, through 
every nonsingular point of the domain there passes one, and only one, 
solution of the system (2.4), which is analytic in 0; consequently, in 
the neighborhood of such a point this solution can be represented in the 
form of power series. 

3. Construction of the solution in the neighborhood of the singular 
points. Let us first examine the equation 

dW p (Z, W) 
dZ=- QK W) (3-l) 

where HZ, W) and Q(Z, W) are analytic functions of the variables Z, W in 
the neig~rh~d of the point Z = W = 0, with 

P(O,0)=Q(U,O)=O 

P(Z,W)=aZ+bW+O(Z~+W~) 

Q(Z,W)=cZ+dW+O(.P+W2) 
(ad-bcf0) (3.2) 
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Let A,, X, be the roots of the equation A2 - (b + ch - (ad - be) = 0. 

We will show that if X = X,/A, is a real negative number (which takes 
place when fb - c)’ + 4ad > 0 and ad - bc > O), then equation (3.1) in 
the real domain has no other integrals tending to zero together with Z 
except for the two analytic ones. 

Let us investigate the possibility of the existence of a solution which 
is O(Zm) at the origin; for this we reduce (3.1) to the canonical form 

(3.3) 

by means of a nonsingular linear transformation. Here a, and ‘pz are func- 
tions of order e2 +- n2, analytic in 5 and n in the neighborhood of the 
point C$ = r] = 0. 

From this, by the way, it follows immediately that in the real domain 
the solution which is being sought has only two distinct critical direc- 
tions, along which four integral curves enter the singular point, i.e. 
the singular point is a saddle point. 

If we construct the Puisot diagram for equation (3.3), we will find 
that at the point t = 77 = 0 the solutions are understood to be(q2 )=+0ft2) 
and 5: = O(q’). Each condition defines a change of variables which trans- 
forms (3.3) to a Briot and Bouquet equation of the first reduced type, wit 
with a real negative coefficient b corresponding to the unknown function 
[b-X--Zwhen ?=O([‘)andb= (1-U >/Awhen~=0$,2)]. Briot 
and Bouquet [ 10 I s h owed that with the exception of the special case when 
b is a positive integer, the equation obtained has one, and only one, 
analytic integral passing through the singular point; furthermore, in the 
real domain there is no other integral, except for the analytic one, 
passing through the point, when Re b < 0. The convergence of the series 
representing the solution is proved by introducing a majorant for the 
right hand side of the Briot and Bouquet equation. In the Z, W variables, 
the solutions of (3.1) passing through the point Z= W= 0 can be written 
as converging series of the form 

FPj = $ A,jZ” (i = l,2) (3.4) 

73.. 1 

The assertion made above has thus been proved. 

Let us now return to the approximating system (2.4). Suppose on the 
contour of the body the singular point is at 0 = BO, and on the i’th 
intermediate curve, at 9 = Bi. We will assume 

&, # a.? # 93 + * * - + QN (3.5) 

which can always be obtained by appropriately choosing the intermediate 
curves. Then, at the k ’ th singular point 

(3 *, P, Pf, . . ‘ , +*‘) (k == 0, 2, 3, . . . , ,w; i =. 2. 3, * . . , fv) 
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only one of the 3N differential equations 

dLjk E, 

h:, = q. (3.6) 

has a right hand side which is indeterminate; however, E,, hk, and also 

the right hand sides of the remaining equations will be analytic in all 

the arguments in the neighborhood of this point. 

Lt?t us linearize the remaining system; then equation (3.6) can be 

Written in the form (3.1) (2 F 8 - 6,, I= vk - vk(k1)P and the conditions 

for the existence of a real negative X are satisfied. Consequently the 

singular point is a saddle point, and the equation (3.6) has no real 

integrals satisfying the condition vk = vk fkj for@=8 k, except for the 

two analytic ones (3.4). 

'lhen in the neighborhood of the k'th singular point there exist two, 

and only two, solutions of the system (2.4) with the initial values 

9 = a,,., $ =r: p, 5 z jtk), . . . , yi = g 

and both solutions are analytic in some domain containing the point 

8 = 8,. Let us connect one of these solutions to the solution before the 

singular point, obtained in the usual manner (the number of conditions 

for connecting is equal to the number of arbitrary conditions at the 

singular point), but since the second solution intersects the first only 

at the singular point itself, the matching conditions uniquely determine 

the integral curve through the given singular point. 'Ihus, the approxi- 

mating system (2.4) has, in the complete domain of integration under 

examination, a unique solution, which is analytic everywhere and which 

satisfies the conditions both at 0 = 0 and on the singular line. 

'Ihe solution of the approximating system is carried out numerically 

with different numbers of intermediate curves: in the first approximation 

(N = 11 there are no intermediate curves, and S, g, t are approximated 

linearly from their values on the body and on the shock wave. The three 

unknown functions f, 0, v. are found from three differential equations. 

In the second approximation (N = 2) one.intermediate curve is introduced, 

in the third - (N = 3) - two curves, etc. Coincidence of the results 

within the required degree of accuracy in the last two iterations can be 

used as an indication of convergence in an actual case. The basic diffi- 

culties of the computation result because, in the first place, the bound- 

ary conditions are given on the singular line, and in the second place, 

after satisfying at each singular point the matching condition, one must 

integrate through this point numerically (in solving one must go through 

all N singular points of the approximating system). Utilizing the series 

representation of the solution in the neighborhood of both the regular 

and the singular points, and taking into account the converging character 

of the integral curves, we succeeded in constructing simple methods of 

passing through the singular points of the approximating system. 
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4. Sme formulae for the flow hehind the shock wave. We will investi- 
gate the local properties of the configuration of the streamlines, $J = 

const. and the lines of constant speed, UI = const. 

Let us derive the formula for the angle 6 between these lines, and 

also for the angle of inclination of the line w = const.to the direction 

of the incident stream (denote this angle by CD ). 

The value of these angles enables one to estimate in the following the 

accuracy of the computation in the most sensitive regions, and yields, 

without any numerical computation, qualitative information about the 

character of the domain of influence for different Mach numbers of the 

incident flow. 

First, let us find expressions for these angles on the shock wave. 

Along a curve IV = const. which has the equation y = y%(x) we have 

(4.1) 

To determine the four derivatives r3wx/8x, a~,,&, ~~~~x, and ~~~/a~, 

we have a system of four equations (the vorticity equation, the trans- 

formed equation of continuity, and the two expressions for the total 

derivative of wx and wY along the shock wave): 

alxu , aw, dw, 
i)ztdyW==~ 

Here R is the vorticity, c is the speed of sound: 

Let us determine the right hand sides of (4.2). Along the shock 

we have 

Therefore, taking into account (1.61, we will find 

(4.2) 

wave 

(4.3) 

where o and w2 are obtained from the boundary conditions on the shock 

wave. 

Similarly, from the relations (1;4) and (1.5) we get 
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__._=F da 
dw, 

dz ” dz, F,=-2*sin27 

287 

(4.4) 

(4.5) 

Evaluating now the unknown derivatives from (4.2), and substituting 
them into (4. l), we get 

Here 

rta = 
(c2 - wy2) (F, + Fz ctg o - F,) + zuI {w_ - w,) (F, + 2Fz ctg o) 

c2 (1 + ctg” u) - (XX - WV ctg 0)” 

On the shock wave the angle a = aI is determined in the following way: 

C&C @* 
i 

for 0. <a 

-@--@*) for dD* >a 
(4.7) 

Wheno=%n ando=a= arc sinM_-I, the curves w = const . are tangent 
to the shock wave. 

Now it is easy to determine the angle 6, between the streamline and 
the curve w = const: 

The angles @, 8, and /3 are positive when measured in the counterclock- 
wise direction. 

As we know, u and fil are functions of M, and w on the shock wave; then 
from the expressions (4.6) - 
6, = S,CM& 

(4.8) it follows that QI = aI CM_, W) and 
w), i.e. for the plane case on the shock wave, the angle which 

the curve w = const.makes with the streamline and with the direction of 
the incident stream (and consequently, the angle at which the curve w = 
const. approaches the shock wave) depends only on the Mach number of the 
incident stream (A!,) if the speed ZD is given. The shape of the body thus 
has no influence on the value of this angle. For axisytnnetric flows these 
angles depend also on the curvature of the shock wave, and therefore on 
the shape of the body. 

Making use of the boundary conditions on the body, we can, in a similar 
way, obtain the expressions for these angles on the profile r = r,(O): 

but $, = a0 - PO , so 

Rowe’ 
tg6, = - 

W, I/rot+ ro’2 
(4.10) 
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Here w0 is the speed on the body, and R,, the radius of curvature of 

the body profile. The primes indicate differentiation with respect to 0. 

For a circular cylinder (rO = 1) one obtains very simple formulae: 

tgoD,= 
2'0 + tg Q&J' 
votg9--VI)' 

tg 60 = v$ (4.11) 

From (4.10) it is evident that 6, = X R for R, = =Q, and 0 < 6, < % IT 
forO<RO<=, wg' > 0, i.e. the curves w = const,approach the body 

contour at right angles only on the straight line sections of the contour, 

and at an acute angle at those points of the contour where the stream 

accelerates and the radius of curvature of the contour is finite. 

Fig. 2. 

The values of the angles aI and 6, on the shock wave, with K = 1.40, 

and for different values of IV = w/c and M, are given in Table 1 and Fig. 

2. cln the sonic line CAf = 1) we found that \S,l = % R for M, = 1.00 and 

1.69 (K = 1.40), f&,1 > KR for l< ffl, < 1.69 and IS ( < ?4n for M, > 

1.69. The shape of the sonic lines for a circular cy V under are shown in 
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Fig.3. From this one can immediately establish the character of the 

domains of influence for different values of M, . For MM < 1.69 the minimal 

domain of influence will be bounded by the characteristic of the first 

family, which goes from the body to the sonic point of the shock wave; 

for h4, > 1.69 there are no characteristics issuing from the *soni.c point 

of the shock wave, and the minimal domain of influence will be bounded by 

the characteristics of the first and second family which emerge from 

points on the body and on the shock wave for M> 1, and are tangent to 

the sonic line (Fig.4). These results also give some idea of the shape of 

the domains of influence for other profiles. 

Fig. 3. 

5. Gmptation of the flow aromd a circular cylinder. As an example 

of the method described above, computations of the flow past a circular 

cylinder (F,, = 1) for different values of M, and different degrees of 

accuracy fN = 1,2,31 were made on a high speed electronic computer of the 

Soviet Academy of Sciences. 

Fig.3 shows the shock waves and the sonic lines for the cases M, = 3.0 

(N = 31, 4.0 and 5.0 (N = 2); experimental data of Kim [ 11 I for izf_, = 4.0 

are also plotted. Incidentally, in his work Kim points out the convex 

character of the sonic line for Mm = 4.0; thus our results agree qualita- 

tively with those of Kim. Furthermore, the values of the angle of inclina- 

tion of the sonic lines at the 
are in good agreement with the 

and 14.11). 

points on the shock wave and on the body 

exact values, obtained from (4.6) - (4.8) 

Fig.4 shows the shock wave, the sonic line, and the boundary character- 

istics which bound the minimal domain of influence, for the case iti_ = 3.0 
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in the third approximation oV= 3). The picture of the flow obtained from 
the second approximation is very close to this one. 

The manner in which the pressure distribution on the cylinder changes 

as M, grows from 2.13 to 5.0 is shown in Fig. 5, where the ordinates re- 
present the ratio of the pressure ~~(6) to the pressure at the critical 
point, p0 (0). 

Fig.6 and Table 2 illustrate the convergence of the method as the 
accuracy of the approximation improves (N = 1,2,3) for #4, = 3.0. A com- 
parison with results of experiments made by G.M. Riabinkov is also shown 
there. 

The largest proportion of the work done here and abroad has been de- 
voted to the determination of the distance, 6 0, from the body to the 
shock wave along the axis of synrnetry. Fig.7 shows experimental data 
taken from Kim’s article (11, and for comparison the results of our 
computation (51, and the theoretical results of Tamada (21, Hida (31, and 
Smrrov (4). It is evident from Fig.7 that our results agree quite well 
with Kim’s experimental data (for example, for M, = 4.0 Kim gives the 
value f 0 = 0.54, while we get co = 0.546). 

Tables 3 and 4 present the results of the numerical computation for 
the flow past a circular cylinder with M_ = 3.0 (N = 3, K = 1.40). 

Table 3 gives the value of the velocity components, u, o, the pressure, 
p, and the stream function, J/, at five points of the ray 6 = const.; the 
distance from the cylinder to the shock wave is divided into four equal 
parts: 

2 =(r - I)‘( (0) = O(cylinder), 0.25, 0.50, 0.75 and 1.00 (shock wave) 

For 4 = 1.00, in addition to these quantities, the values of 

1 

&, x= +s’ X-1 va _ d In (P”~--~ 
v1=9 I - 

dJ, 

are shown, 

The dimensionless pressure, temperature (referred to the temperature 
in front of the shock wave), and entropy, can be found at the same points 
from the following formulas: 

P- P 
l-wa T--i-W’) s=c,(lc--f)inv* 

where W* = u* + v*, and v = v,($); the quantity v 
the determination of the torticity. 

2 = v2 ($1/1) is used in 

Tsble 4 gives the coordinates of the sonic line and of the boundary 
characteristics for the same case. 

Analysis of the computations and comparison with experimental data 
show that in the neighborhood of the axis of symaetry the first approxi- 
mation already gives fair results; the pressure distribution on the body 
and on the shock wave, and the shape and the position of the shock wave, 
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3 

O.OOW 
0625 
1250 
1875 
2500 

0.3125 
3750 
4375 
5000 
5625 

0.6250 
6875 
7500 
8125 
8750 

0.9375 
1.m 

0625 
1250 

i- 

Table 2. 

N-i 

‘ 

0.696 
698 
701 
708 
717 

0.730 
746 
767 
793 
825 

0.662 
xl6 
959 

1.020 
- 

- 
- 

- 

c-0 

Ol(r 

(uzo: 

D w 

ia) 

P IV 

0 0 328 
625 30 327 

1250 61 324 
1875 92 318 
2500 123 311 

3125 155 301 

3750 186 290 

4375 217 277 

5000 247 263 

5625 277 247 

6w1 307 231 

6875 336 215 

7207 352 206 

7520 366 198 

7832 380 189 

8145 394 181 

8379 405 175 

8759 42i 165 

9962 43.5 157 
9375 446 149 

9888 462 141 
100cm 475 134 
10312 488 126 
10625 501 119 

10936 513 112 

11250 526 105 
11562 536 99 

1.000 
997 
991 
980 
964 

0.942 
914 
880 
841 
797 

0.749 
697 
642 
581 
- 

- 
- 
- 
- 

F - 

L 

N-2 N-3 

‘ 

0.706 
710 
715 

724 
737 

0.752 
770 
792 
818 
847 

0.881 
919 
963 

1.012 
068 

I.130 
201 
280 
369 

able 3. 

Ir* 

1.003 
997 
989 
974 
952 

0.923 
867 
847 
803 
757 

0.708 
658 
607 
557 
!m 

0.460 
414 
371 
331 

D 10’ P 10 

-706 0 m 0 

-703 29 321 17 
-697 57 319 34 

-665 85 314 51 
-667 112 309 67 

-643 140 302 8.4 
-612 167 294 100 
-574 193 285 Ii6 

-529 219 274 132 
-477 245 264 148 

-417 270 252 164 
-348 294 240 179 
-396 306 234 187 
-266 317 226 194 
-226 329 222 2ot 

-181 339 216 209 
-146 346 211 2f4 
- 88 360 204 223 
-35 370 198 230 

19 360 193 237 

77 390 187 244 
137 399 181 251 
lB9 406 176 257 
265 417 170 264 
334 426 16.5 271 

405 434 159 278 
479 442 154 285 

- 
c- 

. P* 

0.703 I.000 

704 996 
709 987 

716 970 
727 B47 

0.741 0.918 

759 863 
780 844 

605 801 

634 754 

0.868 0.706 

907 655 

952 805 

I.002 554 

057 503 

1,121 0,455 

193 408 

273 364 

365 321 

5 
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TABLE 3. 

f=O.50 f = 0.75 
- 

- 
0 101 uw ow 44 10’ UlW 

311 
311 

E 
301 

;EI 

E 
267 
258 

z 
239 
235 

g 

21% 
212 
207 
202 
198 
193 
189 

:Ei 

62 
:iE 
2!m 
3125 
3750 
4375 

s 

E 

;iZ 
7832 
8145 

:zi 

is: 
9688 

EE 
i 0625 
10938 
11250 
i 1582 

297 

3: 
293 
290 

iii 
27% 
270 
263 

z 
244 
240 
23% 

ii; 
225 
220 
21% 
212 
208 
204 
200 
19% 
192 

* 

0 

i;r: 
145 
194 
242 
291 
340 

iit 

ii! 
592 
618 

iif 
695 
722 
750 
777 
806 

Ei 
893 

0 

ii 

i: 

:z 
191 
21% 
241 

Et! 
299 

;i: 
331 
339 

3 

iit 
395 
403 
411 
418 
425 

-i%%2 

I:fg 
-1596 
-1549 
-1490 
-1417 
-1330 
-1230 
-1117 
- 990 

zz 
- 692 
- 611 
- 52% 
- 461 
- 354 
- 260 
- 164 
- 64 

38 

E 
360 
472 
585 

z:g: 
-1211 

z::!! 

r:;;; 
- 99% 
- S21 
-835 
- 738 
- 629 
- 566 
- 503 
- 438 

z Ei 
- 227 
- 149 
- 068 

1:: 
194 

iii 
485 
588 

” 1LT B 10’ P w 

- 4860 
- 92% 
--1323 
--1714 

z;g 
-2774 

-Ei 
-3432 

-ii: 

zgg 

-3699 

ZCE 
-3719 
-3706 
-3%82 
-3%50 

278 
27% 
273 
269 
26% 
261 
257 
252 

E 

Ei 

E 

zi 
223 
220 

5:: 
210 
207 

E 

-2079 
-2070 
-2043 
-iQ99 
--1935 
-1855 
--175@ 
-1843 

1:;:; 

-1202 
-1023 
- 922 

1 ;g 

- 615 
- 533 
- 400 

1% 
- 47 

7% 

E 
483 

!E 

0 

ii 

*E 
162 
192 . 

iii: 
278 

ikEi 

Ei 
3%4 
375 

iti 

E 

g; 

444 
451 
457 
482 

3004 
2975 
2937 
2893 

i!it 
2727 

Ez 
2562 
2528 
2593 
2459 
2433 
239t 

E 
228% 
2251 
2217 
2183 
2149 
2117 
2084 

;z 
709 
716 
727 
741 
759 

E 

E 
930 
952 
977 

:Ei 
1057 

:tE 
115% 
1193 

:iE 
13i8 

E 
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are determined with sufficient accuracy in the whole domain of integra- 

tion by the second approximation, while for the determination of the 

velocity field, and, consequently, for the construction of the sonic lines 

with Mw,< 3.0 - 3.5, one needs at least the third approximation, whereas 
the second approximation suffices for Mm> 3.5. 

ao co 

Fig. 4. 

a4 d8 

Fig. 5. 

Fig. 6. Fig. 7. 

l'he results of the computation enable one to construct, in the domain 

of influence, a picture of the pressure distribution on and outside of 

the body, the characteristics, the shock wave, etc. 

The problem of the flow around an axisymnetric body, with a detached 

shock wave, can be solved in a similar way. 
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Sonic Line 

--x Y -# Y -X 

0.664 0.748 0.777* 
666 798 813 
668 852 853 
669 911 896 
670 974 941 

0.671 1.045 0.988 
677 133 1.037 
692 246 089 
720 340 141 
7775 443 186 

0.841 1.510 
940 569 

1.029 602 
117 626 
276 668 

0.575 
576 
584 
593 
605 

0.620 
638 
660 
684 
711 

0.742 
7778 

0.818 
834 
904 
972 

1.038 

1.101 
163 
222 
280 
336 

1.391 
443 

TABLE 4. 

Limiting Characteristics 

First Family Second Family F - 

! Y 

1.433 
494 
544 
592 
638 

1.683 
726 
768 
809 
843 

Note. Points at which the characteristics are tangent to the 
sonic line are denoted by an asterisk. 

BIBLIOGRAPHY 

1. Smurov, G.S., Tsilindr v sverkhzvukovom statsionarnom ploskoparallel’- 
nom potoke gaza (A cylinder in a plane uniform stationary super- 
sonic gas flow). Trudy YYIA ia. Zhvkowskogo No. 191, 1947. 

2. Melkus, H,, ‘iiber den abgel’dsten Verdiehtungsstoss. Ingen. - Arch. 

Vol. 19, No. 3, 1951. 

3. Busemann. A., A Review of Analytical Methods for the Treatment of 

Floms vith Detached Shocks. NACA TN 1858. 1949. 

4. Tamada, K., On detached shock wave of circular cylinder and sphere 
moving with supersonic velocities. Torotica Lab., Tech. Memo. 

No. 25, 1950. 

5. Hida. K., An approximate study of the detached shock wave in front 
of a circular cylinder and a sphere. J. Phys. Sac. Japan. No. 8, 

1053. Vol. 10. No. 1, 1955. 



296 0.1. Betotserkovskii 

6. Dchida. S. and Yasuhara. M., The rotational field behind a curved 

shock wave calculated by the method of flux analysis. .?. Aero, Sci. 

Vol. 23, No. 9, 1956. 

7. Mitchell, A.R., Application of relaxation to the rotational field of 

flow behind a bow shock wave. Quart. J. Mech. Vol. 4, p. 3’71, 1951. 

8. Dorodnitsyn, A.A., Ob odnom metode chislennogo resheniia nekotoryh 

zadach serogidrodinamiki (Concerning a numerical method of solving 

certain problems in fluid dynamics). Trudy Ttet’yego Ysesoiuznogo 

~ate~a~ic~esk~g~ S’yetda.Vol. 2, 1956. 

9. Hristianovich, S.A., 0 sverkhzvukovyhtecheniiakh gaza (on supersonic 

gas flows). Trudy TSAGL No. 543, 1941. 

10. Goursat, E., Cours d’Analyse Mathenatique. Vol. 2, Paris, 1949. 

11. Kim, Chul-Soo, Experimental studies of supersonic flow past a 

circular cylinder. J. Phys. Sot. Japan. Vol. 11, No. 4, 1956. 

Translated by M.Y. 


