# FLOW WITH A DETACHED SHOCK WAVE ABOUT <br> A SYMMETRICAL PROFILE 

## (OBTEKANIE SImmetrichnogo PROPILIA S otoshedshei UDARNOI VOLNOI)

PMM Vol.22. No.2, 1958, pp.206-219

## O. M. BELOTSERKOVSKII <br> (Moscow)

(Received 2 July 1958)


#### Abstract

The problem of flow with a detached shock wave past a body has been examined by many authors, but in an approximate formulation in most cases.


In [1.2], and in other publications the solution is given in the form of series. However, this method enables one to investigate only a small portion of the flow in the neighborhood of the axis of symmetry, and near the stagnation point. Making use of the hodograph plane for rotational flows, it is possible to examine only cases where the Mach number of the incident flow is close to one (Busemann [3] and others). The Japanese scientists, Tamada [4] and Hida [5], solve the given problem by making a priori assumptions about the form of the shock wave, and assuming the fluid to be incompressible behind the shock wave. Uchida and Yasuhara [6] propose a semi-graphical approximate method for computing the flow behind a curved shock wave, and Mitchell [1] calculates the flow around a blunt body by a difference method, using experimental data for the form and the position of the shock wave.

Below, the problem is solved numerically with the aid of integral relations proposed by Dorodnitsin [8]. This method reduces the problem of integrating a system of nonlinear partial differential equations to that of numerically solving an approximating system of ordinary differential equations. With the use of electronic computing machines, the method of integral relations affords the possibility of obtaining the final results with the required degree of accuracy for the problem in the exact formulation.

1. Formulation of the problem. Let us examine the flow with a detached shock wave past a plane body of arbitrary shape (profile), having an axis of symmetry. Suppose a uniform supersonic stream ( $M_{\infty}>1$ ) of an ideal gas, with constant velocity $w_{\infty}$, flows past such a body at a zero angle of attack. A shock wave, the position and shape of which are not known in advance, is formed in front of the body. It is required to
compute a mixed rotational flow of a compressible gas in the minimal domain of influence, i.e. in the domain bounded by the shock wave, the axis of symmetry, the body contour, and the first limiting characteristic (or characteristics) passing between the shock wave and the body.

Let us introduce dimensionless quantities, referring the speed to the maximum speed, the pressure and the density to the pressure and the density in front of the shock wave, and the linear dimensions to a typical body dimension; then we have the equations of motion, the equation of continuity, and the adiabatic equation in the form

$$
\begin{gather*}
\operatorname{rot} \mathbf{w} \times \mathbf{w}+\frac{\nabla w^{2}}{2}+\frac{\nabla(k p)}{\rho}=0 \quad\left(k=\frac{x-1}{2 x}\right) \\
\nabla(p \mathbf{w})=0, \quad \mathbf{w} \nabla \frac{p}{\rho^{x}}=0 \tag{1.1}
\end{gather*}
$$

where $w, p$, and $\rho$ are the velocity, pressure, and density behind the shock front, and $\kappa$ is the adiabatic exponent (for air $\kappa=1.40$ ).

Let us write the system of equations (1.1) in polar coordinates $r, \theta$ (Fig.1), introducing the Bernoulli equation in place of one of the equations of motion; together with the equation for the stream function, $\psi$, the new system will have the form:

$$
\begin{array}{cl}
\frac{\partial r F}{\partial r}+\frac{\partial S}{\partial \vartheta}=g, & \frac{\partial r h}{\partial r}+\frac{\partial t}{\partial \vartheta}=0  \tag{1.2}\\
\frac{d \psi}{d \vartheta}=\rho\left(v \frac{d r}{d \vartheta}-r u\right), & \varphi=\frac{p}{\rho^{x}}=\varphi(\psi)
\end{array}
$$

Here

$$
\begin{gathered}
H=k p+\rho u^{2}, \quad S=\rho u v, \quad g=k p+\rho v^{2}, \quad h=\tau u, \quad t=\tau v \\
p=\left(1-w^{2}\right) \rho, \quad \rho=\tau \varphi^{-\frac{1}{x-1}}, \quad \tau=\left(1-w^{2}\right)^{\frac{1}{x-1}}
\end{gathered}
$$

and $u, v$, are the components of the velocity, $w$, in the $r$ and $\theta$ directions. In this system the unknown functions are $u, v, \psi, \phi$.

The boundary conditions on the body contour $r=r(\theta)$ have the form

$$
\begin{gather*}
u=\frac{v}{r_{0}} \frac{d r_{0}}{d \vartheta}, \quad \psi=0  \tag{1.3}\\
\varphi=\frac{4 x}{x^{2}-1}\left(\frac{x-1}{x+1}\right)^{x} \frac{1}{w_{\infty}^{2 x}}\left[\frac{w_{\infty}^{2}}{1-w_{\infty}^{2}}-\frac{(x-1)^{2}}{4 x}\right]=\text { const }
\end{gather*}
$$

Let the equation of the shock front be represented in the form $r=r_{0}(\theta)+\epsilon(\theta)$, where $\epsilon(\theta)$ is the distance from the body contour to the shock wave along the ray $\theta=$ const. We can express the well known shock conditions in the required form:

$$
\begin{gather*}
w_{x}=w_{\infty}\left[1-\frac{2 \sin ^{2} \sigma}{x+1}\left(1-\frac{1}{M_{\infty} \sin ^{2} \sigma}\right)\right]  \tag{1.4}\\
w_{\nu}=\frac{w_{\infty}}{x+1} \sin 2 \sigma\left(1-\frac{1}{M_{\infty}^{2} \sin ^{2} \sigma}\right)  \tag{1.5}\\
\vartheta=\frac{4 x}{x^{2}-1}\left(\frac{x-1}{x+1}\right)^{\times}\left[\omega-\frac{(x-1)^{2}}{4 x}\right]\left(1+\frac{1}{\omega}\right)^{x}  \tag{1.6}\\
\phi \equiv \psi_{\infty}=w_{\infty}\left(1-w_{\infty}^{2}\right)^{\frac{1}{x-1}}\left(r_{0}+\varepsilon\right) \sin \vartheta \tag{1.7}
\end{gather*}
$$

Here $\sigma$ is the angle between the tangent to the shock front and the direction of the incident stream, $w_{x}$ and $w_{y}$ are the components of the velocity, $w$, along the axes $x=-r \cos \theta$ and $y=r \sin \theta$ (Fig.1); the subscript $\infty$ indicates quantities in front of the shock wave; $\omega=w_{\infty}{ }^{2}$ $\sin ^{2} \sigma /\left(1-w_{\infty}^{2}\right)$.

The velocity components are related in the following way:

$$
\begin{equation*}
u=w_{y} \sin \vartheta-w_{x} \cos \vartheta, \quad v=w_{x} \sin \vartheta+w_{y} \cos \vartheta \tag{1.8}
\end{equation*}
$$

From the relation $d y / d x=\tan \sigma$ we get

$$
\begin{equation*}
\frac{d \varepsilon}{d \vartheta}=-\left(r_{0}+\varepsilon\right) \operatorname{ctg}(\sigma+\vartheta)-\frac{d r_{0}}{d \vartheta} \tag{1.9}
\end{equation*}
$$

2. Method of solution. Between the body and the shock wave let us draw the $N-1$ curves

$$
r=r_{i}(\vartheta)=r_{0}(\vartheta)+\xi_{i} \varepsilon(\vartheta) \quad\left(\xi_{i}=\frac{N-i+1}{N}, \quad i=2,3, \ldots, N\right)
$$

which break up the region of integration into $N$ strips. We will denote all the quantities on the $i$ 'th intermediate curve by the index $i$, those on the shock front ( $i=1$ ) by the index 1 , and on the body by the index 0 .

Let us integrate the first two equations of the system (1.2) along an arbitrary ray $\theta=$ const, from the body contour to the boundary of every strip; we then get $2 N$ independent integral relations:

$$
\begin{gather*}
\frac{d}{d \vartheta} \int_{r_{0}}^{r_{i}} S(r, \vartheta) d r-\left(S_{i} \frac{d r_{i}}{d \vartheta}-S_{0} \frac{d r_{0}}{d \vartheta}\right)+r_{i} H_{i}-r_{0} H_{0}=\int_{r_{i}}^{r_{i}} g(r, \vartheta) d r  \tag{2.1}\\
\frac{d}{d \vartheta} \int_{r_{0}}^{r_{i}} t(r, \vartheta) d r-\left(t_{i} \frac{d r_{i}}{d \vartheta}-t_{0} \frac{d r_{0}}{d \vartheta}\right)+r_{i} h_{i}-r_{0} h_{0}=0 \tag{2.2}
\end{gather*}
$$

We will approximate the functions occurring in the integrands of (2.1) and (2.2) by interpolating polynomials of degree $N$ in the variable $r$, taking for the points of interpolation the boundaries of the strips

$$
\begin{equation*}
f(r, \vartheta)=\sum_{m=0}^{N} a_{m}(\vartheta)\left[\frac{r-r_{0}(\vartheta)}{\varepsilon(\vartheta)}\right]^{m} \tag{2.3}
\end{equation*}
$$

where the coefficients $a_{m}(\theta)$ will depend linearly on the values of the corresponding functions on the boundaries of the strips. Writing further the last two equations of the system (1.2) along each intermerliate curve $r=r_{i}(\theta)$ (on the body and on the shock wave, $\psi$ and $\phi$ are determined from the boundary conditions) and taking into account the equation (1.9), we will get an approximating system, consisting of $4 N-1$ equations from the unknown quantities $\epsilon, \sigma, v_{0}, u_{i}, v_{i}, \psi_{i}, \phi_{i},(i=2,3, \ldots, N)$.

Let us solve this system for the derivatives of all the unknown functions:

$$
\begin{gather*}
\frac{d \varepsilon}{d \vartheta}=-\left(r_{0}+\varepsilon\right) \operatorname{ctg}(\sigma+\vartheta)-\frac{d r_{0}}{d \vartheta}, \quad \frac{d \sigma}{d \vartheta}=F \\
\frac{d v_{0}}{d \vartheta}=\frac{E_{n}}{(x-1) /(x+1)-w_{0}^{2}}, \quad \frac{d \psi_{i}}{d \vartheta}=\rho_{i}\left[v_{i} \frac{d r_{i}}{d \vartheta}-r_{i} u_{i}\right]  \tag{2.4}\\
\frac{d u_{i}}{d \vartheta}=\frac{1}{t_{i}} \frac{1}{\varphi_{i}^{x-1}}\left[f_{1}-u_{i} \varphi_{i}-\frac{1}{x-1} f_{2}+\frac{S_{i}}{x-1} \frac{d \ln \varphi_{i} d \psi_{i}}{d \psi_{i}} \frac{d \vartheta}{d \vartheta}\right] \\
\frac{E_{i}}{d \vartheta}=\frac{E_{i}}{\left(x-1+2 u_{i}^{2}\right) /(x+1)-w_{i}^{2}}, \quad \varphi_{i}\left(\psi_{i}\right)=\varphi_{1}\left(\psi_{i}\right) \quad(i=2,3, \ldots, N)
\end{gather*}
$$

Here $F, E_{0}, E_{i}, f_{1}$, and $f_{2}$ are known functions of $\theta$ and of the quantities to be determined, analytic in the domain of integration, (the form of these functions depends on $N$ ), and

$$
\begin{equation*}
\cdot \frac{d \ln \varphi_{i}}{d \psi_{i}}=\left.\frac{d \ln \varphi_{1}}{d \psi_{1}}\right|_{\psi_{1}=\psi_{i}}=\left.\frac{d \ln \varphi_{1}}{d \sigma} \frac{d \sigma}{d g} \frac{d \vartheta}{d \psi_{1}}\right|_{\psi_{1}=\psi_{i}} \tag{2.5}
\end{equation*}
$$

where $d \ln \phi_{1} / d \sigma$ and $d \psi_{1} / d \theta$ are computed from (1.6) and (1.7).
All the boundary conditions on the body and on the shock front are satisfied automatically, as can be seen from the manner in which the system was constructed. The integration of the system obtained is done numerically, starting from the axis of symmetry $\theta=0$, where $v_{0}=v_{i}=$ $\psi_{i}=0, \sigma=1 / 2 \pi, \phi=\phi_{1}(0)$, and the $N$ initial values of $\epsilon$ and $u_{i}$ are unknown parameters.

In the mixed flow under examination, disturbances in the supersonic region beyond the limiting characteristic do not influence the subsonic region, and consequently we cannot obtain on the upper boundary of the domain of integration the additional conditions needed to determine the missing initial values of the unknown functions. However, from the structure of the approximating system it is evident that in the neighborhood of the sonic line $N$ equations of the system have $N$ moving singular points. In order that a continuous transition across these points be possible, it is necessary that certain conditions be satisfied at these points; namely, at the points where

$$
w_{0}^{2}=\frac{x-1}{x+1}, \quad w_{i}^{2}=\frac{x-1+2 u_{i}{ }^{2}}{x+1} \quad(i=2,3, \ldots, N)
$$



Fig. 1.
$E_{0}=0$ and $E_{i}=0$ respectively (we will call the totality of these points a singular line). If the conditions are not satisfied, the derivatives $d v_{0} / d \theta, d v_{i} / d \theta$, become infinite on the singular line, i.e. the accelerations become infinite, and then the motion cannot be continued across this line; the singular line is then a limit line and the whole solution has no physical meaning. These conditions are similar to the ones obtained by Khristianovich [9] from an exact system of partial differential equations for certain cases of plane irrotational flows. To satisfy the $N$ conditions on the singular line we have at our disposal $N$ parameters when $\theta=0$. In this way, the requirement that the motion be continuous across the singular line yields the missing conditions for the determination of the problem.

In the approximating system (2.4) the right hand sides are functions, analytic in all their arguments everywhere in the domain under examination, except at the points of the singular line, where $N$ equations have right hand sides of the form $0 / 0$. According to Cauchy's theorem, through every nonsingular point of the domain there passes one, and only one, solution of the system (2.4), which is analytic in $\theta$; consequently, in the neighborhood of such a point this solution can be represented in the form of power series.

## 3. Construction of the solution in the neighborhood of the singular

 points. Let us first examine the equation$$
\begin{equation*}
\frac{d W}{d Z}=\frac{P(Z, W)}{Q(Z, W)} \tag{3.1}
\end{equation*}
$$

where $P(Z, W)$ and $Q(Z, W)$ are analytic functions of the variables $Z, W$ in the neighborhood of the point $Z=W=0$, with

\[

\]

Let $\lambda_{1}, \lambda_{2}$ be the roots of the equation $\lambda^{2}-(b+c) \lambda-(a d-b c)=0$. We will show that if $\lambda=\lambda_{1} / \lambda_{2}$ is a real negative number (which takes place when $(b-c)^{2}+4 a d>0$ and $a d-b c>0$ ), then equation (3.1) in the real domain has no other integrals tending to zero together with $Z$ except for the two analytic ones.

Let us investigate the possibility of the existence of a solution which is $O\left(Z^{m}\right)$ at the origin; for this we reduce (3.1) to the canonical form

$$
\begin{equation*}
\frac{d \eta}{d \xi}=\frac{P_{*}(\xi, \eta)}{Q_{*}(\xi, \eta)} \equiv \frac{\lambda \eta+\Phi_{1}(\xi, \eta)}{\xi+\Phi_{2}(\xi, \eta)} \tag{3.3}
\end{equation*}
$$

by means of a nonsingular linear transformation. Here $\Phi_{1}$ and $\Phi_{2}$ are functions of order $\xi^{2}+\eta^{2}$, analytic in $\xi$ and $\eta$ in the neighborhood of the point $\xi=\eta=0$.

From this, by the way, it follows immediately that in the real domain the solution which is being sought has only two distinct critical directions, along which four integral curves enter the singular point, i.e. the singular point is a saddle point.

If we construct the Puisot diagram for equation (3.3), we will find that at the point $\xi=\eta=0$ the solutions are understood to be $\left(\eta^{2}\right)=0\left(\xi^{2}\right)$ and $\xi=O\left(\eta^{2}\right)$. Each condition defines a change of variables which transforms (3.3) to a Briot and Bouquet equation of the first reduced type, wit with a real negative coefficient $b$ corresponding to the unknown function $\left[b=\lambda-2\right.$ when $\eta=O\left(\xi^{2}\right)$ and $b=(1-2 \lambda) / \lambda$ when $\left.\xi=O\left(\eta^{2}\right)\right]$. Briot and Bouquet [10] showed that with the exception of the special case when $b$ is a positive integer, the equation obtained has one, and only one, analytic integral passing through the singular point; furthermore, in the real domain there is no other integral, except for the analytic one, passing through the point, when $\mathrm{Re} b<0$. The convergence of the series representing the solution is proved by introducing a majorant for the right hand side of the Briot and Bouquet equation. In the $Z, W$ variables, the solutions of (3.1) passing through the point $Z=W=0$ can be written as converging series of the form

$$
\begin{equation*}
W_{j}=\sum_{n \cdots 1}^{\infty} A_{n_{j}} Z^{n} \quad(i=1,2) \tag{3.4}
\end{equation*}
$$

The assertion made above has thus been proved.
Let us now return to the approximating system (2.4). Suppose on the contour of the body the singular point is at $\theta=\theta_{0}$, and on the $i$ 'th intermediate curve, at $\theta=\theta_{i}$. We will assume

$$
\begin{equation*}
\mathfrak{\vartheta}_{0} \neq \vartheta_{2} \neq \vartheta_{3} \neq \cdots \neq \vartheta_{\mathrm{N}} \tag{3.5}
\end{equation*}
$$

which can always be obtained by appropriately choosing the intermediate curves. Then, at the $k$ 'th singular point

$$
\left(\vartheta_{k}, \varepsilon^{(k)}, \sigma^{(k)}, \ldots, p_{i}^{(k)}\right) \quad(k=0,2,3, \ldots, N ; i=2,3, \ldots, N)
$$

only one of the $3 N$ differential equations

$$
\begin{equation*}
\frac{d v_{k}}{d \vartheta}=\frac{E_{k}}{\Delta_{k}} \tag{3.6}
\end{equation*}
$$

has a right hand side which is indeterminate; however, $E_{k}, \Lambda_{k}$, and also the right hand sides of the remaining equations will be analytic in all the arguments in the neighborhood of this point.

Let us linearize the remaining system; then equation (3.6) can be written in the form (3.1) $\left(Z=\theta-\theta_{k}, W=v_{k}-v_{k}^{(k)}\right)$, and the conditions for the existence of a real negative $\lambda$ are satisfied. Consequently the singular point is a saddle point, and the equation (3.6) has no real integrals satisfying the condition $v_{k}=v_{k}{ }^{(k)}$ for $\theta=\theta_{k}$, except for the two analytic ones (3.4).

Then in the neighborhood of the $k$ 'th singular point there exist two, and only two, solutions of the system (2.4) with the initial values

$$
\mathfrak{\vartheta}=\vartheta_{k}, \quad s=s^{(k)}, \quad \sigma=\sigma^{(k)}, \ldots, \wp_{i}=\vartheta_{i}^{(k)}
$$

and both solutions are analytic in some domain containing the point $\theta=\theta_{k}$. Let us connect one of these solutions to the solution before the singular point, obtained in the usual manner (the number of conditions for connecting is equal to the number of arbitrary conditions at the singular point), but since the second solution intersects the first only at the singular point itself, the matching conditions uniquely determine the integral curve through the given singular point. Thus, the approximating system (2.4) has, in the complete domain of integration under examination, a unique solution, which is analytic everywhere and which satisfies the conditions both at $\theta=0$ and on the singular line.

The solution of the approximating system is carried out numerically with different numbers of intermediate curves: in the first approximation ( $N=1$ ) there are no intermediate curves, and $S, g, t$ are approximated linearly from their values on the body and on the shock wave. The three unknown functions $\epsilon, \sigma, v_{0}$ are found from three differential equations. In the second approximation ( $N=2$ ) one intermediate curve is introduced, in the third - $(N=3)$ - two curves, etc. Coincidence of the results within the required degree of accuracy in the last two iterations can be used as an indication of convergence in an actual case. The basic difficulties of the computation result because, in the first place, the boundary conditions are given on the singular line, and in the second place, after satisfying at each singular point the matching condition, one must integrate through this point numerically (in solving one must go through all $N$ singular points of the approximating system). Utilizing the series representation of the solution in the neighborhood of both the regular and the singular points, and taking into account the converging character of the integral curves, we succeeded in constructing simple methods of passing through the singular points of the approximating system.
4. Some formulae for the flow behind the shock wave. We will investigate the local properties of the configuration of the streamlines, $\psi=$ const. and the lines of constant speed, $w=$ const.

Let us derive the formula for the angle $\delta$ between these lines, and also for the angle of inclination of the line $w=$ const.to the direction of the incident stream (denote this angle by $\Phi$ ).

The value of these angles enables one to estimate in the following the accuracy of the computation in the most sensitive regions, and yields, without any numerical computation, qualitative information about the character of the domain of influence for different Mach numbers of the incident flow.

First, let us find expressions for these angles on the shock wave. Along a curve $w=$ const. which has the equation $y=y_{w}(x)$ we have

$$
\begin{equation*}
\frac{d y_{w}}{d x} \equiv \operatorname{tg} \Phi_{*}=-\frac{w_{x} \partial w_{x} \partial x+w_{y} \partial w_{y} \partial x}{w_{x} \partial w_{x} / \partial y+w_{y} \partial w_{y} \partial y} \tag{4.1}
\end{equation*}
$$

To determine the four derivatives $\partial w_{x} / \partial x, \partial w_{x} / \partial y_{y}, \partial w_{y} / \partial x$, and $\partial w_{y} / \partial y$, we have a system of four equations (the vorticity equation, the transformed equation of continuity, and the two expressions for the total derivative of $w_{x}$ and $w_{y}$ along the shock wave):

$$
\begin{gather*}
\frac{\partial u_{y}}{\partial x}-\frac{\partial w_{x}}{\partial y}=\Omega \\
\left(1-\frac{w_{x}^{2}}{c^{2}}\right) \frac{\partial w_{x}}{\partial x}-\frac{w_{x} w_{y}}{c^{2}}\left(\frac{\partial w_{x}}{\partial y}+\frac{\partial w_{y}}{\partial x}\right)+\left(1-\frac{w_{y} y^{2}}{c^{2}}\right) \frac{\partial w_{y}}{\partial y}=0  \tag{4.2}\\
\frac{\partial w_{x}}{\partial x}+\frac{\partial w_{x}}{\partial y} \operatorname{tg} \sigma=\frac{d w_{x}}{d x}, \quad \frac{\partial u_{y}}{\partial x}+\frac{\partial w_{y}}{\partial y} \operatorname{tg} \sigma=\frac{d w_{y}}{d x}
\end{gather*}
$$

Here $\Omega$ is the vorticity, $c$ is the speed of sound:

$$
\Omega=\frac{1}{2 x}\left(1-w^{2}\right)^{\frac{x}{x-1}}-\frac{1}{x-1} \frac{d \ln \varphi}{d \psi}, \quad c^{2}=\frac{x-1}{2}\left(1-w^{2}\right)
$$

Let us determine the right hand sides of (4.2). Along the shock wave we have

$$
\frac{d \ln \varphi}{d \psi}=\frac{d \ln \varphi}{d \sigma} \frac{d \sigma}{d x} \frac{d x}{d \psi}, \quad \frac{d \psi}{d x}=\rho_{\infty} w_{\infty} \operatorname{tg} \sigma
$$

Therefore, taking into account (1.6), we will find

$$
\begin{gather*}
\Omega=F_{1} \frac{d \sigma}{d x} \\
F_{1}=\frac{1}{2 x}-\left(1-w^{2}\right)^{\frac{x}{x-1}} \varphi^{-\frac{1}{x-1}} \frac{2[\omega-1 / 2(x-1)]^{2} \operatorname{ctg}^{2} \sigma}{P_{\infty} w_{\infty}(\omega+1)\left[\omega-1 / 4(x-1)^{2 / x}\right]} \tag{4.3}
\end{gather*}
$$

where $\omega$ and $w^{2}$ are obtained from the boundary conditions on the shock wave.

Similarly, from the relations (1.4) and (1.5) we get

$$
\begin{gather*}
\frac{d u_{x}}{d x}=F_{2} \frac{d \sigma}{d x}, \quad F_{2}=-2 \frac{w_{\infty}}{x+1} \sin 2 \sigma  \tag{4.4}\\
\frac{d u_{u}}{d x}=F_{3} \frac{d \sigma}{d x}, \quad F_{3}=2 \frac{w_{\infty}}{x+1}\left(\cos 2 \sigma+\frac{1}{M_{\infty} \sin ^{2} \sigma}\right) \tag{4.5}
\end{gather*}
$$

Evaluating now the unknown derivatives from (4.2), and substituting them into (4.1), we get

$$
\begin{equation*}
\operatorname{tg} \Phi_{*}=-\frac{m\left(w_{x}-w_{y} \operatorname{ctg} \sigma\right)+\left(w_{\infty}-w_{x}\right)\left(F_{1}+F_{2} \operatorname{ctg} \sigma\right)}{\left(F_{2}-m \operatorname{ctg} \sigma\right)\left(u_{x}-w_{y} \operatorname{ctg} \sigma\right)+w_{y}\left(F_{3}-F_{1}\right)} \tag{4.6}
\end{equation*}
$$

Here

$$
m=\frac{\left(c^{2}-w_{y}^{2}\right)\left(F_{1}+F_{2} \operatorname{ctg} \sigma-F_{3}\right)+w_{x}\left(w_{\infty}-w_{x}\right)\left(F_{1}+2 F_{2} \operatorname{ctg} \sigma\right)}{c^{2}\left(1+\operatorname{ctg}^{2} \sigma\right)-\left(w_{x}-w_{y} \operatorname{etg} \sigma\right)^{2}}
$$

On the shock wave the angle $\Phi=\Phi_{1}$ is determined in the following way:

$$
\Phi_{1}=\left\{\begin{array}{ccc}
\Phi_{*} & \text { for } \quad \Phi_{*}<\sigma  \tag{4.7}\\
-\left(\pi-\Phi_{*}\right) & \text { for } & \Phi_{*}>\sigma
\end{array}\right.
$$

When $\sigma=1 / 2 \pi$ and $\sigma=a=$ arc $\sin M_{\infty}^{-1}$, the curves $w=$ const. are tangent to the shock wave.

Now it is easy to determine the angle $\delta_{1}$ between the streamline and the curve $w=$ const.:

$$
\begin{equation*}
\delta_{1}=\Phi_{1}-\beta_{1}, \quad \beta_{1}=\operatorname{arctg} \frac{w_{y}}{w_{x}} \tag{4.8}
\end{equation*}
$$

The angles $\Phi, \delta$, and $\beta$ are positive when measured in the counterclockwise direction.

As we know, $\sigma$ and $\beta_{1}$ are functions of $M_{\infty}$ and $w$ on the shock wave; then from the expressions (4.6) - (4.8) it follows that $\Phi_{1}=\Phi_{1}\left(M_{\infty}, w\right)$ and $\delta_{1}=\delta_{1}\left(M_{\infty}, w\right)$, i.e. for the plane case on the shock wave, the angle which the curve $w=$ const. makes with the streamline and with the direction of the incident stream (and consequently, the angle at which the curve $w=$ const. approaches the shock wave) depends only on the Mach number of the incident stream $\left(M_{\infty}\right)$ if the speed $w$ is given. The shape of the body thus has no influence on the value of this angle. For axisymmetric flows these angles depend also on the curvature of the shock wave, and therefore on the shape of the body.

Making use of the boundary conditions on the body, we can, in a similar way, obtain the expressions for these angles on the profile $r=r_{0}(\theta)$ :

$$
\begin{equation*}
\operatorname{tg} \Phi_{0}=-\frac{\left.\mid r_{0} r_{0}{ }^{\prime} \operatorname{tg} 9+r_{0}{ }^{2}-r_{0} r_{0}{ }^{\prime \prime}+r_{0}{ }^{\prime 2}\right] v_{0}+\left(r_{0} \operatorname{tg} \vartheta-r_{0}{ }^{\prime}\right) r_{0} v_{0}^{\prime}}{\left[r_{0} r_{0}^{\prime}-\left(r_{0}{ }^{2}-r_{0} r_{0}{ }^{\prime}+r_{0}{ }^{\prime 2}\right) \operatorname{tg} v\right] v_{0}+\left(r_{0}+r_{0}{ }^{\prime} \operatorname{tg} 9\right) r_{0} v_{0}^{\prime}} \tag{4.9}
\end{equation*}
$$

but $\delta_{0}=\Phi_{0}-\beta_{0}$, so

$$
\begin{equation*}
\operatorname{tg} \delta_{0}=\frac{R_{0} w_{0}^{\prime}}{w_{0} \sqrt{r_{0}^{2}+r_{0}^{\prime 2}}} \tag{4.10}
\end{equation*}
$$

| $\begin{aligned} & 905: 61- \\ & 025: 0- \end{aligned}$ | 0ヶৃ：85－ 919：š－ | 889：885－ <br> 29L：さZ1 | $\begin{aligned} & \text { 887:z91-- } \\ & \text { L8z:Z95- } \end{aligned}$ | ZZ૬： $991-$ 279：591－ |  |  |  |  |  |  | $\stackrel{8}{.9}$ | $0 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 56¢：¢ı－ | 98LiLI－ | 505：08－ | 550：90－ | 090：391－ | 629：091－ |  |  |  |  |  | ． 8 | 0.8 |
| 566：Z | 685：L | \＆ம： 2 － | 8LE：9L－ | 850：051－ | 67S：091－ |  |  |  |  |  | －（1） |  |
| 088：ぞ－ | ¢ヶLi¢！－ | 651885－ | \＆โ¢69\％－ | ع50：09－ | 009：985－ | 000：091－ |  |  |  |  | $\bigcirc$ | z |
| cs9：ZZ | 201：08 | 16\％：95 | 201．9 | 7¢1：\％8－ | 079：915－ | 000：0s5－－ |  |  |  |  | －（1） |  |
| 297：8． | 999：\％゙5－ | ：68：91－ | 918：1Z－ | 18568－ | 856：3－ | 6666881－ | 9\％2：以ヶ－ |  |  |  | ． 8 | 9．I |
| 7䲱：92 | 2L\％\％ | 271：12 | 0¢S：\％ | ع18．2 | 798：L9－ | 956887－ | 6980985－ |  |  |  | －（1） |  |
| เъて：ع－ | 8てもっゅ！－ | ゅて：91－ | 950：0\％－ | 908：6z－ | 96\％：89－ | 188：675－ | 888：885－ | 868：5ど |  |  | －8 | $\pm$ |
| 998：88 | 889：92 | 28L：EZ | \％${ }^{\text {\％}}$ \％ 81 | 9\％8：S | 1ヵヶ\％8－ | 207：85－ | 10tieZI－ | LLF：LET |  |  | －（1） |  |
| $\begin{aligned} & 1+L: Z i- \\ & 1+\varepsilon: 00 \end{aligned}$ | 3+9:६! - LL8:8 | $\begin{aligned} & \text { LGL:SI - } \\ & 66 \%: 92 \end{aligned}$ | $00: 8 \mathrm{l}-$ เ๕: | $\text { 70L:\% } 7 \text { - }$ $020: \varepsilon \tau+$ | 168：LG－ 08L：75－ | $\begin{aligned} & \text { 081:015- } \\ & 000.08 \end{aligned}$ | 786：8レー LS\＆6501－ | $\underset{\text { LZ9:६bl- }}{\text { 208:ZZI- }}$ | 959：Eえよ 988：ZZ5－ |  | ．88 | て＇ |
| $\begin{aligned} & \text { 68105 - } \\ & \text { } 09: 2 \% \end{aligned}$ |  | $\begin{aligned} & 888: z 1- \\ & 859: 6 z \end{aligned}$ | $\begin{aligned} & 508: 3 i- \\ & 908: 92 \end{aligned}$ | $56688 \% \text { — }$ $078: 61$ | L69:0E - <br> 2レ\＆：8 | 909：EL－ 2060： 0 － | $\begin{aligned} & 998: 18- \\ & 869: 69- \end{aligned}$ | $\begin{aligned} & \text { 9R6:96 - } \\ & \text { LZZ:\%8 - } \end{aligned}$ | $\begin{aligned} & 568: \angle 6- \\ & 806: 76- \end{aligned}$ | $\left\|\begin{array}{l} 000: 06- \\ 000: 06- \end{array}\right\|$ | $\stackrel{.8}{.18}$ | $0 \cdot$ |
| $\begin{aligned} & \varepsilon 56.9- \\ & 86 \mathrm{LOS} \mathrm{~s} \end{aligned}$ | がたL－ 696：祆 | $\begin{aligned} & \angle 89: L- \\ & \varepsilon L L: E \varepsilon \end{aligned}$ | 095：8－ 969：LE | $\begin{aligned} & \text { 926:6 } \\ & \text { VE8:L2 } \end{aligned}$ | $15666$ | $\begin{aligned} & \text { seo:81- } \\ & \varepsilon \varepsilon 6 \% \mathrm{E} \end{aligned}$ | \%\%:E! - 8\％ 5 と | 598：8 69\％：61 |  |  | $\stackrel{\circ}{\circ} \mathrm{P}$ | 8.0 |
| Luts | 585：9 | 260：9 | $965 \%$ | 169：6 | L99695 | 808：LS |  |  |  |  | ． 8 | 9.0 |
| 以ヶ\％\％ | 99\％こで | 988．15 | 97\％ 5 | 180：以 | 887\％ 76 | 28\％¢ 29 |  |  |  |  | － 0 |  |
| 988:89 B8Z:LL | 689：9L <br> 775：Z8 |  |  |  |  |  |  |  |  |  | $\stackrel{\circ 8}{.9}$ | 50 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 008 | 00.2 | 009 | 000 s | 00.7 | $00 \cdot \varepsilon$ | 002 | sLl | 08.1 | 27 | $00 \%$ |  |  |



Here $w_{0}$ is the speed on the body, and $R_{0}$, the radius of curvature of the body profile. The primes indicate differentiation with respect to $\theta$.

For a circular cylinder ( $r_{0}=1$ ) one obtains very simple formulae:

$$
\begin{equation*}
\operatorname{tg} \Phi_{0}=\frac{v_{0}+\operatorname{tg} \vartheta v_{0}^{\prime}}{v_{0} \operatorname{tg} \vartheta-v_{0}^{\prime}} \quad \operatorname{tg} \delta_{0}=\frac{v_{0}^{\prime}}{v_{0}} \tag{4.11}
\end{equation*}
$$

From (4.10) it is evident that $\delta_{0}=1 / 2 \pi$ for $R_{0}=\infty$, and $0<\delta_{0}<1 / 2 \pi$ for $0<R_{0}<\infty, w_{0}^{\prime}>0$, i.e. the curves $w=$ const. approach the body contour at right angles only on the straight line sections of the contour, and at an acute angle at those points of the contour where the stream accelerates and the radius of curvature of the contour is finite.


Fig. 2.
The values of the angles $\Phi_{1}$ and $\delta_{1}$ on the shock wave, with $\kappa=1.40$, and for different values of $M=w / c$ and $M_{\infty}$ are given in Table 1 and Fig. 2. On the sonic line $(M=1)$ we found that $\left|\delta_{1}\right|=1 / 2 \pi$ for $M_{\infty}=1.00$ and $1.69(\kappa=1.40),\left|\delta_{1}\right|>1 / 2 \pi$ for $1<M_{\infty}<1.69$ and $\left|\delta_{1}\right|<1 / 2 \pi$ for $M_{\infty}>$ 1.69. The shape of the sonic lines for a circular cylinder are shown in

Fig.3. From this one can immediately establish the character of the domains of influence for different values of $M_{\infty}$. For $M_{\infty} \leqslant 1.69$ the minimal domain of influence will be bounded by the characteristic of the first family, which goes from the body to the sonic point of the shock wave; for $M_{\infty}>1.69$ there are no characteristics issuing from the sonic point of the shock wave, and the minimal domain of influence will be bounded by the characteristics of the first and second family which emerge from points on the body and on the shock wave for $M>1$, and are tangent to the sonic line (Fig.4). These results also give some idea of the shape of the domains of influence for other profiles.


Fig. 3.
5. Computation of the flow around a circular cylinder. As an example of the method described above, computations of the flow past a circular cylinder ( $r_{0}=1$ ) for different values of $M_{\infty}$ and different degrees of accuracy ( $N=1,2,3$ ) were made on a high speed electronic computer of the Soviet Academy of Sciences.

Fig. 3 shows the shock waves and the sonic lines for the cases $M_{\infty}=3.0$ $(N=3), 4.0$ and $5.0(N=2)$; experimental data of $\mathrm{Kim}[11]$ for $M_{\infty}=4.0$ are also plotted. Incidentally, in his work Kim points out the convex character of the sonic line for $M_{\infty}=4.0$; thus our results agree qualitatively with those of Kim. Furthermore, the values of the angle of inclination of the sonic lines at the points on the shock wave and on the body are in good agreement with the exact values, obtained from (4.6) - (4.8) and (4.11).

Fig. 4 shows the shock wave, the sonic line, and the boundary characteristics which bound the minimal domain of influence, for the case $M_{\infty}=3.0$
in the third approximation ( $N=3$ ). The picture of the flow obtained from the second approximation is very close to this one.

The manner in which the pressure distribution on the cylinder changes as $M_{\infty}$ grows from 2.13 to 5.0 is shown in Fig. 5, where the ordinates represent the ratio of the pressure $p_{0}(\theta)$ to the pressure at the critical point, $p_{0}(0)$.

Fig. 6 and Table 2 illustrate the convergence of the method as the accuracy of the approximation improves ( $N=1,2,3$ ) for $M_{\infty}=3.0$. A comparison with results of experiments made by G.M. Riabinkov is also shown there.

The largest proportion of the work done here and abroad has been devoted to the determination of the distance, $\epsilon_{0}$, from the body to the shock wave along the axis of symmetry. Fig. 7 shows experimental data taken from Kim's article (1), and for comparison the results of our computation (5), and the theoretical results of Tamada (2), Hida (3), and Smurov (4). It is evident from Fig. 7 that our results agree quite well with Kim's experimental data (for example, for $M_{\infty}=4.0 \mathrm{Kim}$ gives the value $\epsilon_{0}=0.54$, while we get $\epsilon_{0}=0.546$ ).

Tables 3 and 4 present the results of the numerical computation for the flow past a circular cylinder with $M_{\infty}=3.0(N=3, \kappa=1.40)$.

Table 3 gives the value of the velocity components, $u, v$, the pressure, $p$, and the stream function, $\psi$, at five points of the ray $\theta=$ const; the distance from the cylinder to the shock wave is divided into four equal parts:

$$
\xi=(r-1 y / \epsilon(\theta)=0(\text { cylinder }), 0.25,0.50,0.75 \text { and } 1.00 \text { (shock wave) }
$$

For $\xi=1.00$, in addition to these quantities, the values of

$$
\text { ع. } \quad \chi=\frac{\pi}{2}-\sigma, \quad \nu_{1}=\varphi^{\frac{1}{x-1}}, \quad \nu_{2}=\frac{d \ln \varphi^{1 / x-1}}{d \psi}
$$

are shown.
The dimensionless pressure, temperature (referred to the temperature in front of the shock wave), and entropy, can be found at the same points from the following formulas:

$$
\rho=\frac{p}{1-w^{2}} \quad T=1-w^{2}, \quad s=c_{v}(x-1) \ln v_{1}
$$

where $w^{2}=u^{2}+v^{2}$, and $\nu_{1}=\nu_{1}(\psi)$; the quantity $\nu_{2}=\nu_{2}(\psi)$ is used in the determination of the vorticity.

Table 4 gives the coordinates of the sonic line and of the boundary characteristics for the same case.

Analysis of the computations and comparison with experimental data show that in the neighborhood of the axis of symmetry the first approximation already gives fair results; the pressure distribution on the body and on the shock wave, and the shape and the position of the shock wave,

Table 2.

| 8 | $N=1$ |  | $N-2$ |  | N-3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | E | $\mu$ | c | $\mu$ | * | $\mu$ |
| 0.0000 | 0.696 | 1.000 | 0.708 | 1.000 | 0.703 | 1.000 |
| 0625 | 688 | 997 | 710 | 997 | 704 | 998 |
| 1250 | 701 | 991 | 715 | 989 | 709 | 987 |
| 1875 | 708 | 880 | 724 | 974 | 716 | 970 |
| 2500 | 717 | 964 | 737 | 952 | 727 | 947 |
| 0.3125 | 0.730) | 0.942 | 0.752 | 0.923 | 0.741 | 0.918 |
| 3750 | 746 | 914 | 770 | 887 | 759 | 883 |
| 4375 | 767 | 880 | 792 | 847 | 780 | 844 |
| 5000 | 793 | 841 | 818 | 803 | 805 | 801 |
| 5625 | 825 | 797 | 847 | 757 | 834 | 754 |
| 0.6250 | 0.862 | 0.749 | 0.881 | 0.708 | 0.868 | 0.706 |
| 6875 | 906 | 697 | 919 | 658 | 907 | 655 |
| 7500 | 959 | 642 | 963 | 607 | 952 | 605 |
| 8125 | 1.020 | 581 | 1.012 | 557 | 1.002 | 554 |
| 8750 | - | - | 068 | 508 | 057 | 503 |
| 0.9375 | - | - | 1.130 | 0.460 | 1.121 | 0.455 |
| 1.0000 | - | - | 201 | 414 | 193 | 408 |
| 0625 | - | - | 280 | 371 | 273 | 364 |
| 1250 | - | - | 369 | 331 | 385 | 324 |

Table 3.

| 8-0.00 (uミ0; ¢ |  |  | $\varepsilon=0.25$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * $10^{4}$ | -108 | $p 10^{\circ}$ | Y 100 | $010{ }^{\circ}$ | $p{ }^{10}$ | \$10* |
| 0 | 0 | 328 | -706 | 0 | 322 | 0 |
| 625 | 30 | 327 | -703 | 29 | 321 | 17 |
| 1250 | 61 | 324 | -697 | 57 | 319 | 34 |
| 1875 | 92 | 318 | -685 | 85 | 314 | 51 |
| 2500 | 123 | 311 | -667 | 112 | 309 | 67 |
| 3125 | 155 | 301 | -643 | 140 | 302 | 84 |
| 3750 | 186 | 290 | -612 | 167 | 294 | 100 |
| 4375 | 217 | 277 | -574 | 193 | 285 | 116 |
| 5000 | 247 | 263 | -529 | 219 | 274 | 132 |
| 5625 | 277 | 247 | -477 | 245 | 264 | 148 |
| 6250 | 307 | 231 | -417 | 270 | 252 | 164 |
| 6875 | 336 | 215 | $-348$ | 294 | 240 | 179 |
| 7207 | 352 | 206 | $-308$ | 306 | 234 | 187 |
| 7520 | 366 | 198 | -268 | 317 | 228 | 194 |
| 7832 | 380 | 189 | -226 | 329 | 222 | 201 |
| 8445 | 394 | 181 | -181 | 339 | 216 | 200 |
| 8379 | 405 | 175 | -146 | 348 | 211 | 244 |
| 8750 | 421 | 165 | -88 | 360 | 204 | 223 |
| 9062 | 435 | 157 | $-35$ | 370 | 198 | 230 |
| 9375 | 448 | 149 | 19 | 380 | 193 | 237 |
| 9688 | 462 | 141 | 77 | 390 | 187 | 244 |
| 10000 | 475 | 134 | 137 | 399 | 181 | 251 |
| 10312 | 488 | 126 | 199 | 408 | 176 | 257 |
| 10625 | 501 | 119 | 265 | 417 | 170 | 264 |
| 10938 | 513 | 112 | 334 | 426 | 165 | 271 |
| 11250 | 526 | 105 | 405 | 434 | 159 | 278 |
| 11562 | 538 | 99 | 479 | 442 | 154 | 285 |

TABLE 3.

| $\xi=0.50$ |  |  |  |  | $\xi=0.75$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - $10{ }^{\circ}$ | U $10{ }^{4}$ | -10* | $p 10^{*}$ | $\psi 10^{*}$ | u $10{ }^{\circ}$ | $\bigcirc 10^{\circ}$ | $p 10^{\circ}$ | $410^{*}$ |
| 0 | -1228 | 0 | 311 | 0 | -1662 | 0 | 297 | 0 |
| 625 | -1224 | 28 | 311 | 33 | -1650 | 29 | 297 | 48 |
| 1250 | -1211 | 56 | 309 | 65 | -1629 | 59 | 295 | 97 |
| 1875 | -1188 | 84 | 306 | 98 | -1596 | 88 | 293 | 145 |
| 2500 | -1155 | 111 | 301 | 130 | -1549 | 118 | 290 | 194 |
| 3125 | -1113 | 138 | 296 | 163 | -1490 | 146 | 286 | 242 |
| 3750 | -1059 | 164 | 290 | 195 | -1417 | 175 | 281 | 291 |
| 4375 | - 996 | 191 | 283 | 227 | -1330 | 202 | 276 | 340 |
| 5000 | - 421 | 216 | 275 | 260 | -1230 | 229 | 270 | 389 |
| 5625 | -835 | 241 | 267 | 292 | -1117 | 255 | 263 | 439 |
| 6250 | - 738 | 264 | 258 | 324 | - 990 | 280 | 256 | 489 |
| 6875 | -629 | 288 | 249 | 355 | -850 | 304 | 248 | 538 |
| 7207 | - 566 | 299 | 244 | 372 | - 771 | 317 | 244 | 566 |
| 7520 | - 503 | 310 | 239 | 388 | - 692 | 328 | 240 | 592 |
| 7832 | - 438 | 321 | 235 | 404 | - 611 | 339 | 236 | 618 |
| 8145 | - 369 | 331 | 230 | 420 | - 526 | 350 | 232 | 644 |
| 8379 | - 316 | 339 | 226 | 432 | - 461 | 358 | 229 | 664 |
| 8750 | - 227 | 350 | 221 | 451 | - 354 | 370 | 225 | 695 |
| 9062 | - 149 | 360 | 216 | 467 | - 260 | 380 | 220 | 722 |
| 9375 | -068 | 369 | 212 | 484 | - 164 | 389 | 216 | 750 |
| 9688 | 16 | 378 | 207 | 500 | - 64 | 398 | 212 | 777 |
| 10000 | 103 | 387 | 202 | 516 | 38 | 407 | 208 | 806 |
| 10312 | 194 | 395 | 198 | 533 | 142 | 415 | 204 | 834 |
| 10625 | 288 | 403 | 193 | 550 | 250 | 424 | 200 | 863 |
| 10938 | 385 | 411 | 189 | 567 | 360 | 431 | 196 | 893 |
| 11250 | 485 | 418 | 184 | 584 | 472 | 439 | 192 | 924 |
| 11562 | 588 | 425 | 180 | 601 | 585 | 446 | 188 | 855 |


| $\theta 10^{4}$ | 4 $10{ }^{4}$ | - $10{ }^{4 \prime}$ | $p 10^{\circ}$ | $\psi 10^{4}$ | c $10{ }^{\circ}$ | * $10{ }^{\circ}$ | $v_{1} 10^{\circ}$ | $v 1^{104}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -2079 | 0 | 281 | 0 | 703 | 0 | 3046 | 0 |
| 625 | -2070 | 34 | 280 | 65 | 704 | 35 | 3041 | $-486$ |
| 1250 | -2043 | 67 | 279 | 130 | 709 | 69 | 3027 | - 926 |
| 1875 | -1999 | 99 | 278 | 195 | 716 | 102 | 3004 | -1323 |
| 2500 | -1935 | 131 | 276 | 261 | 727 | 135 | 2975 | -1714 |
| 3125 | -1855 | 162 | 273 | 327 | 741 | 167 | 2937 | -2102 |
| 3750 | -1759 | 192 | 269 | 393 | 759 | 200 | 2893 | -2461 |
| 4375 | -1643 | 222 | 266 | 461 | 780 | 232 | 2843 | -2774 |
| 5000 | -1512 | 251 | 261 | 529 | 805 | 263 | 2787 | -3038 |
| 5625 | -1365 | 278 | 257 | 598 | 834 | 294 | 2727 | -3256 |
| 6250 | -1202 | 305 | 252 | 668 | 868 | 324 | 2684 | -3432 |
| 6875 | -1023 | 329 | 246 | 739 | 907 | 354 | 2598 | -3565 |
| 7207 | - 922 | 342 | 243 | 778 | 930 | 369 | 2562 | -3619 |
| 7520 | $-823$ | 353 | 241 | 815 | 952 | 384 | 2528 | -3658 |
| 7832 | -720 | 364 | 238 | 852 | 977 | 398 | 2593 | -3685 |
| 8145 | $-615$ | 375 | 235 | 890 | 1003 | 412 | 2459 | -3699 |
| 8379 | $-533$ | 383 | 233 | 919 | 1023 | 422 | 2433 | --3699 |
| 8750 | -400 | 394 | 229 | 965 | 1057 | 439 | 2391 | -3724 |
| 9082 | $-285$ | 404 | 226 | 1004 | 1088 | 452 | 2356 | -3719 |
| 9375 | $-167$ | 413 | 223 | 1045 | 1121 | 466 | 2321 | -3706 |
| 9688 | - 47 | 421 | 220 | 1086 | 4158 | 479 | 2286 | -3682 |
| 10000 | - 76 | 429 | 217 | 1127 | 1183 | 493 | 2251 | -3650 |
| 10312 | 203 | 437 | 214 | 1170 | 1232 | 506 | 2217 | -3587 |
| 10825 | 331 | 444 | 210 | 1214 | 1274 | 518 | 2183 | -3501 |
| 10938 | 463 | 451 | 207 | 1258 | 1318 | 531 | 2148 | -3408 |
| $\begin{aligned} & 11250 \\ & 11562 \end{aligned}$ | 506 732 | 457 462 | 204 | 1304 | 1365 1415 | 543 555 | 2117 2084 | -3322 -3230 |

are determined with sufficient accuracy in the whole domain of integration by the second approximation, while for the determination of the velocity field, and, consequently, for the construction of the sonic lines with $M_{\infty} \leqslant 3.0-3.5$, one needs at least the third approximation, whereas the second approximation suffices for $M_{\infty}>3.5$.


Fig. 4.


Fig. 5.


Fig. 6.


Fig. 7.

The results of the computation enable one to construct, in the domain of influence, a picture of the pressure distribution on and outside of the body, the characteristics, the shock wave, etc.

The problem of the flow around an axisymmetric body, with a detached shock wave, can be solved in a similar way.

TABLE 4.

| Sonic Line |  | Limiting Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | First Family |  | Second Family |  |
| -x | $y$ | -x | $v$ | -x | $y$ |
| 0.664 | 0.748 | 0.575 | 0.818 | 0.777* | 1.433 |
| 666 | 798 | 576 | 834 | 813 | 494 |
| 668 | 852 | 584 | 904 | 853 | 544 |
| 669 | 911 | 593 | 972 | 896 | 592 |
| 670 | 974 | 605 | 1.038 | 941 | 638 |
| 0.671 | 1.045 | 0.620 | 1.101 | 0.988 | 1.683 |
| 677 | 135 | 638 | 163 | 1.037 | 726 |
| 692 | 246 | 660 | 222 | 089 | 768 |
| 720 | 340 | 684 | 280 | 141 | 809 |
| 777* | 443 | 711 | 336 | 186 | 843 |
| 0.841 | 1.510 | 0.742 | 1.391 |  |  |
| 940 | 569 | 777* | 443 |  |  |
| 1.029 | 602 |  |  |  |  |
| 117 | 626 |  |  |  |  |
| 276 | 668 |  |  |  |  |

Note. Points at which the characteristics are tangent to the sonic line are denoted by an asterisk.

## BIBLIOGRAPHY

1. Smurov, G.S., Tsilindr $v$ sverkhzvukovom statsionarnom ploskoparallel'. nom potoke gaza (A cylinder in a plane uniform stationary supersonic gas flow). Trudy VVIA im. Zhukovskogo No. 191, 1947.
2. Melkus, H. Uber den abgelosten Verdichtungsstoss. Ingen. - Arch. Vol. 19. No. 3. 1951.
3. Busemann, A., A Review of Analytical Methods for the Treatment of Flovs vith Detached Shocks. NACA TN 1858, 1949.
4. Tamada, K., On detached shock wave of circular cylinder and sphere moving with supersonic velocities. Tomotica Lab., Tech. Memo. No. 25, 1950.
5. Hida, K. An approximate study of the detached shock wave in front of a circular cylinder and a sphere. J. Phys. Soc. Japan. No. 8, 1053. Vol. 10 , No. 1. 1955.
6. Uchida, S. and Yasuhara, M. , The rotational field behind a curved shock wave calculated by the method of flux analysis. J. Aero. Sci. Vol. 23, No. 9, 1956.
7. Mitchell, A.R., Application of relaxation to the rotational field of flow behind a bow shock wave. Quart. J. Mech. Vol. 4, p. 371, 1951.
8. Dorodnitsyn, A.A., Ob odnom metode chislennogo resheniia nekotoryh zadach aerogidrodinamiki (Concerning a numerical method of solving certain problems in fluid dynamics). Trudy Tret'yego Vsesoiuznogo Matematicheskogo S'yezda. Vol. 2, 1956.
9. Hristianovich, S.A., O sverkhzvukovyh techentiakh gaza (on supersonic gas flows). Trudy TSAGI. No. 543, 1941.
10. Goursat. E., Cours d'Analyse Mathematique. Vol. 2, Paris, 1949.
11. Kim, Chul-Soo, Experimental studies of supersonic flow past a circular cylinder. J. Phys. Soc. Japan. Vol. 11, No. 4, 1956.
